Skip to main content

Advertisement

Log in

Experimental Investigation of Pressure on the Thermal Conductivity of Granular Carbon Aerogels

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal conductivity of granular carbon aerogels was measured using the transient hot-strip method under different pressure conditions through the design and construction of a high-pressure chamber and a vacuum chamber to provide a pressure environment ranging from 10−2 Pa to 30 MPa. The microstructure and specific surface area of the material were characterized through the cryogenic nitrogen adsorption method and scanning electron microscope images. Analysis of the experimental results showed that the thermal conductivity of the granular sample reached a constant when the pressure was less than 100 Pa, and the thermal conductivity of the sample showed a similar change trend (i.e., increased with pressure) under two different gas atmospheres. When the pressure was higher than 1000 Pa, the thermal conductivity increased significantly and the high rate of change continued until the pressure increased to 5 MPa, at which point the increase in thermal conductivity slowed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L.M. Hair, R.W. Pekala, R.E. Stone, C. Chen, J. Vac. Sci. Technol. A 6, 2559–2563 (1998)

    Article  ADS  Google Scholar 

  2. X. Lu, O. Nilsson, J. Fricke, R.W. Pekala, J. Appl. Phys. 73, 581–584 (1993)

    Article  ADS  Google Scholar 

  3. M.G. Kaganer, Thermal Insulation in Cryogenic Engineering (IPST Press, Jerusalem, 1969), pp. 18–25

    Google Scholar 

  4. J. Fricke, T. Tillotson, Thin Solid Films 297, 212–223 (1997)

    Article  ADS  Google Scholar 

  5. R. Baetens, B.P. Jelle, A. Gustavsen, Energy Build. 43, 761–769 (2011)

    Article  Google Scholar 

  6. C. Rouzaud, Int. J. Heat Mass Transf. 39, 2115–2130 (1996)

    Article  Google Scholar 

  7. Y. Cao, D. Song, D. Liu, P. Tang, J. Oil. Gas Technol. 28, 68–71 (2006)

    Google Scholar 

  8. B. Sanner, C. Karytsas, D. Mendrinos, L. Rybach, Geothermics 32, 579–588 (2003)

    Article  Google Scholar 

  9. I.E. Agency, Sour.: OECD Energy 2004, i–252 (2004)

    Google Scholar 

  10. P.E. Ahlstroem, S. Loefverberg, L.B. Nilsson, Radioact. Waste Manag. (NY); (United States), 1–3 (1981)

  11. A. A. Olunike, Food Science and Quality Management (2014)

  12. R. Petričević, M. Glora, J. Fricke, Carbon 39, 857–867 (2001)

    Article  Google Scholar 

  13. J. Shen, J. Wang, J. Zhai, Y. Guo, G. Wu, B. Zhou, J. Sol-Gel. Sci. Technol. 31, 209–213 (2004)

    Article  Google Scholar 

  14. G. Wang, G.S. Wei, C. Xu, Y.P. Yang, X.Z. Du, Appl. Therm. Eng. 147, 464–472 (2019)

    Article  Google Scholar 

  15. M. Wiener, G. Reichenauer, S. Braxmeier, F. Hemberger, H.P. Ebert, Int. J. Thermophys. 30, 1372–1385 (2009)

    Article  ADS  Google Scholar 

  16. B.J. Bailey, K. Kellner, Physica 39, 444–462 (1968)

    Article  ADS  Google Scholar 

  17. J. Kestin, R. Paul, A.A. Clifford, W.A. Wakeham, Phys. A 100, 349–369 (1980)

    Article  Google Scholar 

  18. F. Reif, Phys. Today 20, 85–87 (1967)

    Article  Google Scholar 

  19. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction, and Diffusion in Gases (Cambridge University Press, London, 1970)

    MATH  Google Scholar 

  20. F. Hemberger, S. Weis, G. Reichenauer, H.P. Ebert, Int. J. Thermophys. 30, 1357–1371 (2009)

    Article  ADS  Google Scholar 

  21. S.N. Schiffres, K.H. Kim, Y. Oh, M.F. Islam, J.A. Malen, in ASME Third International Conference on Micro/Nanoscale Heat and Mass Transfer, pp. 591–595 (2012)

  22. K. Swimm, S. Vidi, G. Reichenauer, H.P. Ebert, J. Non-Cryst, Solids 456, 114–124 (2017)

    Google Scholar 

  23. J. Feng, J. Feng, C. Zhang, J. Porous Mater. 19, 551–556 (2012)

    Article  Google Scholar 

  24. M.A. Worsley, J.H. Satcher, T.F. Baumann, J. Appl. Phys. 105, 845 (2009)

    Article  Google Scholar 

  25. Y.H. Zhong, B. Zhou, J.Y. Gui, L.I. Yu-Nong, D.U. Ai, J. Shen, W.U. Guang-Ming, Z.H. Zhang, Atom. Energy Sci. Technol. 45, 1170–1176 (2011)

    Google Scholar 

  26. S.E. Gustafsson, Rev. Sci. Instrum. 62, 797–804 (1991)

    Article  ADS  Google Scholar 

  27. G.S. Wei, X.Z. Du, X.X. Zhang, F. Yu, J. Heat Trans-T. ASME 132, 1187–1191 (2010)

    Article  Google Scholar 

  28. M. Gustavsson, H. Wang, R.M. Trejo, E. Lara-Curzio, R.B. Dinwiddie, S.E. Gustafsson, Int. J. Thermophys. 27, 1816–1825 (2006)

    Article  ADS  Google Scholar 

  29. G.S. Wei, Y.S. Liu, X.X. Zhang, F. Yu, X.Z. Du, Int. J. Heat Mass Transf. 54, 2355–2366 (2011)

    Article  Google Scholar 

  30. Z.Z. Chen, X.S. Ge, Y.Q. Gu, University of Science and Technology of China Press (1990)

  31. M. Arduini-Schuster, J. Manara, C. Vo, Int. J. Therm. Sci. 98, 156–164 (2015)

    Article  Google Scholar 

  32. Y.S. Touloukian, P.E. Livey, S.C. Saxena, IFI/Plenum Press (1970)

  33. F. Yu, X.X. Zhang, Acta Metrol. Sin. 26, 27–29 (2005)

    Article  Google Scholar 

  34. S.E. Gustafsson, E. Karawacki, M.N. Khan, J. Phys. D Appl. Phys. 12, 1411 (1979)

    Article  ADS  Google Scholar 

  35. H.L. Yang, Removal of C5 + Heavy Hydrocarbons from Natural Gas by Adsorption, in PhD Thesis, Tianjin University, Tianjin (2009)

  36. Z. Zhi, D. Jie, H. Zhu, Chin. J. Rare Met. 35, 411–416 (2011)

    ADS  Google Scholar 

  37. S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  ADS  Google Scholar 

  38. H. Reiss, VDI-Wärmeatlas (Springer, Berlin, 1997)

    Google Scholar 

  39. J. Feng, J.Z. Feng, Y.G. Jiang, Aerosp. Mater. Technol. 42, 1–6 (2012)

    Google Scholar 

  40. K. Swimm, G. Reichenauer, S. Vidi, H.P. Ebert, Int. J. Thermophys. 30, 1329–1342 (2009)

    Article  ADS  Google Scholar 

  41. H. Zhang, W. Fang, Z. Li, W. Tao, Int. J. Heat. Mass. Trans. 68, 158–161 (2015)

    Article  Google Scholar 

  42. H. Zhang, Y.Z. Li, R. Dan, J. Eng. Thermophys-rus. 34, 756–759 (2013)

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the National Natural Science Foundation of China (Nos. 51776066 and 51806064), the Fundamental Research Funds for the Central Universities (No. 2018ZD04), and the International Clean Energy Talent Program (iCET2018) supported by China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaosheng Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, G., Huang, C., Zhou, Z. et al. Experimental Investigation of Pressure on the Thermal Conductivity of Granular Carbon Aerogels. Int J Thermophys 40, 57 (2019). https://doi.org/10.1007/s10765-019-2522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2522-4

Keywords

Navigation