Skip to main content
Log in

Comments on “Can the Temperature Dependence of the Heat Transfer Coefficient of the Wire–Nanofluid Interface Explain the “Anomalous” Thermal Conductivity of Nanofluids Measured by the Hot-Wire Method?”

  • Comment
  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The paper seeks to answer a question posed in a recent paper by Hasselman [1] in this journal concerning the application of the transient hot-wire method to the measurement of the thermal conductivity of fluids in general, and the effective thermal conductivity of nanofluids, in particular. At the same time, the paper corrects a number of errors of fact and assertion made in that paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. D.P.H. Hasselman, Int. J. Thermophys. 39, 109 (2018)

  2. S.U.S. Choi, J.A. Eastman, Pres. ASME Congress (San Francisco, 1995)

  3. S.U.S. Choi, Z.G. Zhang, W. Yu, F.E. Lockwood, E.A. Grulke, Appl. Phys. Lett. 79, 2254 (2001)

    ADS  Google Scholar 

  4. G.J. Tertsinidou, Ch. Tsolakidou, M. Pantzali, M.J. Assael, L. Colla, L. Fedele, S. Bobbo, W.A. Wakeham, New measurements of the apparent thermal conductivity of nanofluids and investigation of their heat transfer capabilities. J. Chem. Eng. Data 62, 491 (2017)

    Google Scholar 

  5. S.M.S. Murshed, K.C. Leong, C. Yang, Appl. Therm. Eng. 28, 2109 (2008)

    Google Scholar 

  6. R. Saidur, K.Y. Leong, H.A. Mohammad, Ren. Sust. Environ. Rev. 15, 1646 (2011)

    Google Scholar 

  7. S.K. Das, S.U.S. Choi, H.E. Patel, Heat Transf. Eng. 27, 3 (2006)

    ADS  Google Scholar 

  8. J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Keblinski, Ann. Rev. Mater. Res. 34, 219 (2004)

    ADS  Google Scholar 

  9. N.A. Roberts, D.G. Walker, Appl. Therm. Eng. 30, 2499 (2010)

    Google Scholar 

  10. M. Rafati, A.A. Hamidi, N.M.S., Appl. Therm. Eng. 45–46, 9 (2012)

  11. T. Yousefi, S.A. Mousavi, B. Farahbakhsh, M.Z. Saghir, Microelectron. Reliab. 53, 1954 (2013)

    Google Scholar 

  12. D.P. Kulkarni, D.K. Das, R.S. Vajjha, Appl Energy 86, 2566 (2009)

    Google Scholar 

  13. R.A. Taylor, P.E. Phelan, T.P. Otanicar, C.A. Walker, M. Nguyen, S. Trimble, R.J. Prasher, Ren. Sust. Energy 3, 023104 (2011)

    Google Scholar 

  14. A. Lenert, E.N. Wang, Sol. Energy 86, 253 (2012)

    ADS  Google Scholar 

  15. F.S. Javadi, R. Saidur, M. Kamalisarvestani, Ren. Sust. Energy Rev. 28, 232 (2013)

    Google Scholar 

  16. C.A. Nieto de Castro, M.J.V. Lourenco, A.P.C. Ribeiro, E. Langa, S.I.C. Vieira, J. Chem. Eng. Data 55, 653 (2010)

    Google Scholar 

  17. S.M.S. Murshed, C.A. Nieto de Castro (eds.), Nanofluids, Synthesis, Properties and Applications (Nova Publishers, New York, 2014)

  18. G. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 36, 1367 (2015)

    ADS  Google Scholar 

  19. K.D. Antoniadis, G.J. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 37, 78 (2016)

    ADS  Google Scholar 

  20. M.J. Assael, I.N. Metaxa, K. Kakosimos, D. Konstandinou, Int. J. Thermophys. 27, 997 (2006)

    ADS  Google Scholar 

  21. C.H. Chon, K.D. Kihm, S.P. Lee, S.U.S. Choi, Appl. Phys. Lett. 87, 153107 (2005)

    ADS  Google Scholar 

  22. H.E. Patel, T. Sundararajan, S.K. Das, J. Nanopart. Res. 12, 1015 (2010)

    ADS  Google Scholar 

  23. S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 47, 560 (2008)

    Google Scholar 

  24. T. Yiamsawasd, A.S. Dalkilic, S. Wongwises, Thermochim. Acta 545, 48 (2012)

    Google Scholar 

  25. G.A. Longo, C. Zilio, Exp. Therm. Fluid Sci. 35, 1313 (2011)

    Google Scholar 

  26. X. Feng, D.W. Johnson, J. Nanopart. Res. 15, 1718 (2013)

    ADS  Google Scholar 

  27. D.H. Yoo, K.S. Hong, H.S. Yang, Thermochim. Acta 455, 66 (2007)

    Google Scholar 

  28. H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, Int. J. Therm. Sci. 48, 363 (2009)

    Google Scholar 

  29. B. Barbes, R. Paramo, E. Blanco, M.J. Pastoriza-Gallego, M.M. Pineiro, J.L. Legido, C. Casanova, J. Therm. Anal. Calorim. 111, 1615 (2013)

    Google Scholar 

  30. G. Colangelo, E. Favale, A. Risi, D. Laforgia, Appl. Energy 97, 828 (2012)

    Google Scholar 

  31. D.W. Oh, A. Jain, J.K. Eaton, K.E. Goodson, J.S. Lee, Int. J. Heat Fluid Flow 29, 1456 (2008)

    Google Scholar 

  32. D. Wen, Y. Ding, Int. J. Heat Mass Transf. 47, 5181 (2004)

    Google Scholar 

  33. E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, Phys. Rev. E 76, 061203 (2007)

    ADS  Google Scholar 

  34. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transf. 125, 567 (2003)

    Google Scholar 

  35. S. Lee, S.U.-S. Choi, S. Li, J.A. Eastman, J. Heat Transf. 121, 280 (1999)

    Google Scholar 

  36. C.H. Li, G.P. Peterson, J. Appl. Phys. 99, 084314 (2006)

    ADS  Google Scholar 

  37. J.A. Eastman, U.S. Choi, S. Li, L.J. Thomson, S. Lee, Mater. Res. Soc. Symp. Proc. 457, 3 (1997)

    Google Scholar 

  38. A. Kazemi-Beydokhti, S.Z. Heris, N. Moghadam, M. Shariati-Niasar, A.A. Hamidi, Chem. Eng. Comm. 201, 593 (2014)

    Google Scholar 

  39. I. Tavman, A. Turgut, Microfluidics Based Microsystems: Fundamentals and Applications (Springer, New York, 2010), p. 139

    Google Scholar 

  40. X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transf. 13, 474 (1999)

    Google Scholar 

  41. X. Zhang, H. Gu, M. Fujii, Int. J. Thermophys. 27, 569 (2006)

    ADS  Google Scholar 

  42. S.A. Angayarkanni, J.J. Philip, J Phys Chem 117, 9009 (2013)

    Google Scholar 

  43. Z. Said, M.H. Sajida, M.A. Alima, R. Saidur, N.A. Rahimb, Int. Comm. Heat Mass Transf. 48, 99 (2013)

    Google Scholar 

  44. R.L. Hamilton, O.K. Crosser, I&EC Fundam. 1, 187 (1962)

    Google Scholar 

  45. M. Corcione, Energ. Convers. Manag. 52, 789 (2011)

    Google Scholar 

  46. K.N. Shukla, T.M. Koller, M.H. Rausch, A.P. Froba, Int. J. Heat Mass Transf. 99, 532 (2016)

    Google Scholar 

  47. K.C. Leong, C. Yang, S.M.S. Murshed, J. Nano Res. 8, 245 (2006)

    Google Scholar 

  48. B. Xiao, Y. Yang, L. Chen, Powder Technol. 239, 409 (2013)

    Google Scholar 

  49. L. Xue, P. Keblinski, S.R. Phillpot, S.U.S. Choi, J.A. Eastman, J. Chem. Phys. 118, 337 (2003)

    ADS  Google Scholar 

  50. Y. Feng, B. Yu, M. Zou, J. Phys. D Appl. Phys. 40, 3164 (2007)

    ADS  Google Scholar 

  51. H. Xie, M. Fujii, X. Zhang, Int. J. Heat Mass Transf. 48, 2926 (2005)

    Google Scholar 

  52. J. Xu, B. Yu, M. Zou, P. Xu, J. Appl. Phys. 39, 4486 (2006)

    Google Scholar 

  53. J. Koo, C. Kleinstreuer, J. Nano Res. 6, 577 (2004)

    Google Scholar 

  54. R. Prasher, W. Evans, P. Meakin, J.P. Phelan, P. Keblinski, Appl. Phys. Lett. 89, 143119 (2006)

    ADS  Google Scholar 

  55. M.J. Assael, C.A. Nieto de Castro, H.M. Roder, W.A. Wakeham, Chapter 7, Transient methods for thermal conductivity, in Experimental Thermodynamics. Vol. III. Measurement of the Transport Properties of Fluids (Blackwell, New York, 1991)

  56. J. Kestin, R. Paul, A.A. Clifford, W.A. Wakeham, Phys A 100, 349 (1980)

    Google Scholar 

  57. M.J. Assael, M. Dix, A. Lucas, W.A. Wakeham, J Chem Soc Faraday Trans 177, 439 (1981)

    Google Scholar 

  58. E.F. May, M.R. Moldover, R.F. Berg, J.J. Hurly, Metrologia 43, 247 (2006)

    ADS  Google Scholar 

  59. E.F. May, M.R. Moldover, R.F. Berg, Int. J. Thermophys. 28, 1085 (2007)

    ADS  Google Scholar 

  60. M.J. Assael, A.E. Kalyva, S.A. Monogenidou, M.L. Huber, R.A. Perkins, D.G. Friend, E.F. May, J. Phys. Chem. Ref. Data 47, 021501 (2018)

    ADS  Google Scholar 

  61. W. Cencek, M. Przybytek, J. Komasa, J.B. Mehl, B. Jeziorski, K. Szalewicz, J. Chem. Phys. 136, 224303 (2012)

    ADS  Google Scholar 

  62. M.J. Assael, A.R.H. Goodwin, V. Vesovic, W.A. Wakeham (eds.), Experimental Thermodynamics Volume IX: Advances in Transport Properties of Fluids (RSC Press, London, 2014)

    Google Scholar 

  63. J.C. Maxwell, A Treatise on Electricity and Magnetism, Vol. I. 3rd edn. (Dover, New York, 1954), p. 430

  64. M.J. Assael, K.D. Antioniadis, W.A. Wakeham, X. Zhang, Int. J. Heat Mass Transf. 138, 597 (2019)

    Google Scholar 

  65. G. Tertsinidou, J.C. Tsolakidou, M. Pantzali, M.J. Assael, L. Colla, L. Fedele, S. Bobbo, W.A. Wakeham, J. Chem. Eng. Data 63, 4277 (2018)

    Google Scholar 

  66. S. Maruyama, T. Kimura, Therm. Sci. Eng. 63, 7 (1999)

    Google Scholar 

  67. G. Balasubramanian, S. Banerjee, I.K. Puri, J. Appl. Phys. 104, 064 (2008)

    Google Scholar 

  68. D. Torii, T. Ohara, K. Ishida, J. Heat Transf. 132, 012402 (2010)

    Google Scholar 

  69. Y. Wang, P. Keblinski, Appl. Phys. Lett. 99, 073112 (2011)

    ADS  Google Scholar 

  70. M. Han, J. Mech. Sci. Technol. 25, 37 (2011)

    Google Scholar 

  71. H. Harikrishna, W.A. Ducker, S.T. Huxtable, Appl. Phys. Lett. 102, 251606 (2013)

    ADS  Google Scholar 

  72. Y. Chen, C. Zhang, Int. J. Heat Mass Transf. 78, 624 (2014)

    Google Scholar 

  73. M.E. Caplan, A. Giri, P.E. Hopkins, J. Chem. Phys. 140, 154701 (2014)

    ADS  Google Scholar 

  74. M. Seddiq, M. Maerefat, M. Mirzaei, Int. J. Therm. Sci. 75, 28 (2014)

    Google Scholar 

  75. O.M. Wilson, X.Y. Hu, D.G. Cahill, P.V. Braun, Phys. Rev. 66, 224301 (2002)

    Google Scholar 

  76. S. Shenogin, L. Xue, R. Ozisik, P. Keblinski, D.J. Cahill, J. Appl. Phys. 95, 8136 (2004)

    ADS  Google Scholar 

  77. M.V. Peralta-Martinez, M.J. Assael, M. Dix, L. Karagiannidis, W.A. Wakeham, Int. J. Thermophys. 27, 353 (2006)

    ADS  Google Scholar 

  78. Y. Benveniste, T. Miloh, Int. J. Eng. Sci. 24, 153 (1986)

    Google Scholar 

  79. D.P.H. Hasselman, L.F. Johnson, J. Compos. Mater. 21, 508 (1987)

    ADS  Google Scholar 

  80. Y.C. Chiew, E.D. Glandt, Chem. Eng. Sci. 42, 2677 (1987)

    Google Scholar 

  81. C.-W. Nan, R. Barringer, D.R. Clarke, H. Gleiter, J. Appl. Phys. 81, 6692 (1997)

    ADS  Google Scholar 

  82. Y. Benveniste, J. Appl. Phys. 61, 2840 (1987)

    ADS  Google Scholar 

  83. H. Xie, J. Wang, T. Xi, Y. Liu, F. Ai, Q. Wu, J. Appl. Phys. 91, 4568 (2002)

    ADS  Google Scholar 

  84. L. Xue, P. Keblinski, S.R. Philpot, S.U.S. Choi, J.A. Eastman, J. Chem. Phys. 118, 337 (2003)

    ADS  Google Scholar 

  85. C.H. Li, G.P. Peterson, J. Appl. Phys. 101, 044312 (2007)

    ADS  Google Scholar 

  86. S.P. Lee, M.H. Lee, M.T. Kim, J.M. Oh, Trans. Korean Soc. Mec. Eng. 28, 510 (2004)

    Google Scholar 

  87. H.E. Patel, S.K. Das, T. Sundararajan, A. Sreekumaran, B. George, T. Pradeep, Appl. Phys. Lett. 85, 2931 (2003)

    ADS  Google Scholar 

  88. H. Xie, W. Yu, Y. Li, L. Chen, Nanoscale Res. Lett. 6, 124 (2011)

    ADS  Google Scholar 

  89. R. Agarwal, K. Verma, N.K. Agrawal, R. Singh, Exp. Therm. Fluid Sci. 80, 19 (2017)

    Google Scholar 

  90. S. Shiozawa, G.S. Campbell, Remote Sens. Rev. 5, 301 (1990)

    Google Scholar 

  91. K.L. Bristow, R.D. White, G.J. Kluitenberg, Austr. J. Soil Res. 32, 447–464 (1994)

    Google Scholar 

  92. M.M. Ghosh, S. Roy, S.K. Pabi, S. Ghosh, J. Nanosci. Nanotechnol. 11, 2196 (2011)

    Google Scholar 

  93. M.M. Ghosh, S. Ghosh, S.K. Pabi, Int. J. Mod. Eng. Res. 1, 400 (2011)

    Google Scholar 

  94. M.M. Ghosh, S. Ghosh, S.K. Pabi, J. Mater. Eng. Perform. 22, 1525 (2013)

    Google Scholar 

  95. J.J. Healy, J.J. deGroot, J. Kestin, Physica 82C (1976)

  96. A. Nagashima, J.V. Sengers, W.A. Wakeham, (eds.), Experimental Thermodynamics. Vol. III. Measurement of the Transport Properties of Fluids (Blackwell, New York, 1991)

  97. P.A. Egelstaff, Chapter 11, an Introduction to the Liquid State, 2nd edn. (Clarendon Press, Oxford, 1994)

    Google Scholar 

  98. J.C.G. Calado, J.M.N.A. Fareleira, C.A.N. de Castro, W. W.A., Rev. Port. Quim. 26, 173 (1984)

  99. D.P.H. Hasselman, Int. J. Thermophys. (2019). https://doi.org/10.1007/s10765-019-2519-z

  100. S. Senthilraja, K. Vijayakumar, R. Gangadevi, “A Comparative Study of Thermal Conductivity of Al2O3/Water, CuO/Water and Al2O3–CiO/Water Nanofluids”, Dig. J. Nanomat. Biostruct. 10:1449–1458 (2015)—(or www.reade.com or www.azom.com or www.ferp.ucsd.edu)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc J. Assael.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assael, M.J., Wakeham, W.A. Comments on “Can the Temperature Dependence of the Heat Transfer Coefficient of the Wire–Nanofluid Interface Explain the “Anomalous” Thermal Conductivity of Nanofluids Measured by the Hot-Wire Method?”. Int J Thermophys 40, 59 (2019). https://doi.org/10.1007/s10765-019-2520-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2520-6

Keywords

Navigation