Skip to main content
Log in

On the Controversy of Nanofluid Rheological Behavior

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Different findings about suitable correlations to describe nanofluid viscosity can be explained based on the research presented in this paper. The effective viscosity of nanofluids is crucial when nanofluids are considered as heat carrier fluids. Despite many publications, however, no consensus about suitable correlations could be found in past years. Particularly, the impact of the shear rate on the viscosity is being discussed controversially. It is shown in this paper that these different findings can be explained considering the theory for the rheology of suspensions. Any measurement of viscosity over shear rate only shows a section of the entire rheological behavior. Thus, experimental results of shear thinning, Newtonian behavior and shear thickening of nanofluids can all be a part of this overall range of possible shear rates. This hypothesis is validated based on viscosity data from the literature and viscosity measurements over a wide range of shear rates for different nanofluids showing all three types of behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.V. Pinto, F.A.S. Fiorelli, Review of the mechanisms responsible for heat transfer enhancement using nanofluids. Appl. Therm. Eng. 108, 720–739 (2016)

    Article  Google Scholar 

  2. J. Eggers, S. Kabelac, Radiative properties of a nanofluid mixture. J. Heat Transf. Conf. Kyoto 15, 5712–5725 (2014)

    Google Scholar 

  3. D. Lapotko, Plasmonic nanoparticle-generated photothermal bubbles and their biomedical applications. J. Nanomed. 4, 813–845 (2009)

    Article  Google Scholar 

  4. O. Mahian, A. Kianifar, S.A. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy. J. Heat Mass Transf. 57, 582–594 (2013)

    Article  Google Scholar 

  5. C. Treopia, A.L. Yarin, J.F. Foss, Springer of Experimental Fluid Mechanics (Springer, Netherlands, 2007)

    Book  Google Scholar 

  6. D.S. Viswanath, D.H.L. Prasad, N.V.K. Dutt, K.Y. Rani, Viscosity of Liquids, Theory, Estimation, Experiment, and Data (Springer, Netherlands, 2007)

    MATH  Google Scholar 

  7. H.A. Barnes, A Handbook of Elementary Rheology (Institute of Non-Newtonian Fluid Mechanics, University of Wales, Treforest, 2000)

    Google Scholar 

  8. J.G. Kirkwood, F.P. Buff, H.S. Green, The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids. J. Chem. Phys. 17, 988–994 (1949)

    Article  ADS  Google Scholar 

  9. J.G. Kirkwood, The statistical mechanical theory of irreversible processes. J. Nuovo Cim. Supply 6, 233–236 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  10. M. Born, H.S. Green, A General Kinetic Theory of Liquids (Cambridge University Press, London, 1949)

    MATH  Google Scholar 

  11. S.E. Quiñones-Cisneros, U.K. Deiters, Generalization of the friction theory for viscosity modeling. J. Phys. Chem. B 110, 12820–12834 (2006)

    Article  Google Scholar 

  12. S.E. Quiñones Cisneros, C.K. Zéberg-Mikkelsen, E.H. Stenby, The friction theory (f-theory) for viscosity modeling. J. Fluid Phase Equilibria 169, 249–276 (2000)

    Article  Google Scholar 

  13. S.G. Brush, Theories of liquid viscosity. Chem. Rev. 62, 513–548 (1962)

    Article  Google Scholar 

  14. H. Eyring, J.O. Hirschfelder, The theory of liquid state. J. Phys. Chem. 4, 249–257 (1937)

    Article  Google Scholar 

  15. H. Eyring, Viscosity, plasticity and diffusion are examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936)

    Article  ADS  Google Scholar 

  16. F.C. Collins, Activation energy of the Eyring theory of liquid viscosity and diffusion. J. Phys. Chem. 26, 398–400 (1957)

    Article  Google Scholar 

  17. J. De Guzman, Relation between fluidity and heat of fusion. J. Anales Soc. Espan. Fia. Y. Quim. 11, 353–362 (1913)

    Google Scholar 

  18. L. Qun-Fang, H. Yu-Chen, L. Rui-Sen, Correlation of viscosities of pure liquids in a wide temperature range. J. Fluid Phase Equilibria 140, 221–231 (1997)

    Article  Google Scholar 

  19. F.W. Lima, The viscosity of binary liquid mixtures. J. Phys. Chem. 56, 1052–1054 (1952)

    Article  Google Scholar 

  20. M. Tamura, M. Kurata, Viscosity of binary liquid mixtures. J Bull. Chem. Soc. Jpn. 25, 32 (1952)

    Article  Google Scholar 

  21. R.K. Hind, E. Mclaughlin, U.R. Ubbelohde, Structure and viscosity of liquids, Camhore + pyrene mixtures. J. Trans. Faraday Soc. 56, 328–330 (1960)

    Article  Google Scholar 

  22. A. Einstein, Eine neue Bestimmung der Moleküldimensionen. J. Ann. Phys. 324, 289–306 (1906)

    Article  ADS  Google Scholar 

  23. A. Einstein, Berichtigung zu meiner Arbeit: „Eine neue Bestimmung der Moleküldimensionen. J. Ann. Phys. 339, 591–592 (1911)

    Article  ADS  Google Scholar 

  24. H. Chen, Y. Ding, C. Tan, Rheological behavior of nanofluids. N. J. Phys. 9, 1–24 (2007)

    Article  ADS  Google Scholar 

  25. G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83, 97 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  26. H. Chen, A. Ding, A. Lapkin, Rheological behavior of nanofluids containing tube/rod-like nanoparticles. J. Powder Technol. 194, 132–141 (2009)

    Article  Google Scholar 

  27. K. Khanafer, K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids. J. Heat Mass Transf. 57, 582–594 (2011)

    MATH  Google Scholar 

  28. L. Mahbubul, R. Saidur, M. Amalina, Latest developments on the viscosity of nanofluids. J. Heat and Mass Transf. 55, 874–885 (2012)

    Article  Google Scholar 

  29. L.S. Sundar, K.V. Sharma, M.T. Naik, M.K. Singh, Empirical and theoretical correlations on viscosity of nanofluids: a review. J. Renew. Sustain. Energy Rev. 25, 670–686 (2013)

    Article  Google Scholar 

  30. P.C. Mishra, S. Mukherhjee, S.K. Nayak, A. Panda, A brief review on viscosity of nanofluid. Int. Nano Lett. 4, 109–120 (2014)

    Article  Google Scholar 

  31. R. Prasher, S. Mukherjee, S.K. Nayak, A. Panda, Measurements of nanofluid viscosity and its implications for thermal applications. J. Appl. Phys. Lett. 89, 109–120 (2006)

    Google Scholar 

  32. M. Chandrasekar, S. Suresh, A.C. Bose, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. J. Exp. Therm. Fluid Sci. 34, 210–216 (2010)

    Article  Google Scholar 

  33. K.B. Anoop, S. Kabelac, T. Sundararajan, D.K. Das, Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration. J. Appl. Phys. 106, 43909 (2009)

    Article  Google Scholar 

  34. Y. Yang, A. Oztekin, S. Neti, S. Mohapatra, Particle agglomeration and properties of nanofluids. J. Nanopart. Res. 14, 852 (2012)

    Article  ADS  Google Scholar 

  35. M.H. Buschmann, Thermal conductivity and heat transfer of ceramic nanofluids. Int. J. Therm. Sci. 162, 19–28 (2012)

    Article  Google Scholar 

  36. D.C. Venerus, J. Buongiorno, R. Christianson, Viscosity measurements on colloidal dispersions (nanofluids) for heat transfer applications. J. Appl. Rheol. 20, 44582 (2010)

    Google Scholar 

  37. W. Tseng, C.H. Wu, Sedimentation, rheology and particle-packing structure of aqueous Al2O3 suspensions. J. Ceram. Int. 29, 821–828 (2003)

    Article  Google Scholar 

  38. W.J. Tseng, C.H. Wu, Aggregiation, rheology and electrophoretic packing structure of aqueous Al2O3 nanoparticle suspensions. J. Acta Mater. 50, 3757–3766 (2000)

    Article  Google Scholar 

  39. W.J. Tseng, F. Tzeng, Effect of ammonium polyacrylate on dispersion and rheology of aqueous ITO nanoparticle colloids. J. Colloids Surf. A 276, 34–39 (2006)

    Article  Google Scholar 

  40. J. Davies, J.G.P. Binner, The role of ammonium polyacrylate in dispersing concentrated alumina suspensions. J. Eur. Ceram. Soc. 20, 1539–1553 (2000)

    Article  Google Scholar 

  41. W.J. Tseng, C.L. Lin, Effects of dispersants on rheological behaviour of BaTiO3 powders in ethanol–isopropanol mixtures. J. Mater. Chem. Phys. 80, 232–238 (2003)

    Article  Google Scholar 

  42. W.J. Tseng, C.-N. Chen, Dispersion and rheology of nickel nanoparticle inks. J. Mater. Sci. 41, 1213–1219 (2006)

    Article  ADS  Google Scholar 

  43. W.J. Tseng, S.Y. Li, Rheology of colloidal BaTiO3 suspension with ammoniumpolyacrylate as a dispersant. J. Mater. Sci. Eng. A 333, 314–319 (2002)

    Article  Google Scholar 

  44. B. Aladag, S. Halelfadl, N. Doner, T. Mare, S. Duret, P. Estelle, Experimental investigations of the viscosity of nanofluids at low temperatures. J. Appl. Energy 97, 876–880 (2012)

    Article  Google Scholar 

  45. R.Y. Hong, T.T. Pan, Y.P. Han, H.Z. Li, J. Ding, S. Han, Magneticfield synthesis of Fe3O4 nanoparticle used as a precursor of ferrofluids. J. Magn. Magn. Mater. 310, 37–47 (2007)

    Article  ADS  Google Scholar 

  46. R.Y. Hong, SGh Etemad, R. Bagheri, J. Thibault, Rheological properties of water-based Fe 3 O 4 ferrofluids. J. Chem. Eng. Sci. 62, 5912–5924 (2007)

    Article  Google Scholar 

  47. J. Garg, B. Poudel, M. Chiesa, J.B. Gordon, J.J. Ma, J.B. Wang, Z.F. Ren, Y.T. Kang, H. Ohtani, J. Nanda, G.H. McKinley, G. Chen, Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J. Appl. Phys. 103, 074301 (2008)

    Article  ADS  Google Scholar 

  48. M. Hojjat, SGh Etemad, R. Bagheri, J. Thibault, Rheological characteristics of non-Newtonian nanofluids: experimental investigation. J. Int. Commun. Heat Mass Transf. 38, 144–148 (2011)

    Article  Google Scholar 

  49. P. Namburu, D.P. Kulkarni, D. Misra, D.K. Das, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture. J. Exp. Therm. Fluid Sci. 32, 397–402 (2007)

    Article  Google Scholar 

  50. M. Kole, T.K. Dey, Thermal conductivity and viscosity of Al2O3 nanofluid based on car engine coolant. J. Phys. D 43, 315501 (2010)

    Article  ADS  Google Scholar 

  51. C. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mare, S. Boucher, H.A. Mintsa, Temperature and particle-size dependent viscosity data for water-based nanofluids—hysteresis phenomenon. J. Heat Fluid Flow 28, 1492–1506 (2007)

    Article  Google Scholar 

  52. C. Nguyen, D.P. Kulkarni, D. Misra, D.K. Das, Viscosity data for Al2O3–water nanofluid—hysteresis: is heat transfer enhancement using nanofluids reliable? J. Therm. Sci. 47, 103–111 (2008)

    Article  Google Scholar 

  53. E. Brown, N.A. Forman, C.S. Orellana, H. Zhang, B.W. Maynor, D.E. Betts, J.M. DeSimone, H.M. Jaeger, Generality of shear thickening in dense suspensions. J. Nat. Mater. 9, 220–224 (2010)

    Article  ADS  Google Scholar 

  54. N.J. Wagner, J.F. Brady, Generality of shear thickening in dense suspensions. J. Phys. Today 62, 27–32 (2009)

    Article  Google Scholar 

  55. D.R. Foss, J.F. Brady, Structure, diffusion and rheology of Brownian suspensions by Stokesian Dynamics simulation. J. Fluid Mech. 407, 167–200 (2000)

    Article  ADS  Google Scholar 

  56. T.N. Phung, J.F. Brady, G. Bossis, Stokesian Dynamics simulation of Brownian suspensions. J. Fluid Mech. 313, 181–207 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eckart Matthias Lange.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raeisian, L., Eggers, J.R., Lange, E.M. et al. On the Controversy of Nanofluid Rheological Behavior. Int J Thermophys 40, 48 (2019). https://doi.org/10.1007/s10765-019-2508-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2508-2

Keywords

Navigation