Skip to main content
Log in

Influence of Size of Tetrahedral Vortex Generators on Characteristics of MgO Particulate Fouling

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The mechanism of the particulate fouling on the rectangular channel with tetrahedral vortex generators was investigated using magnesia nanoparticles. Using a set of orthogonal experiments, the effects of the height, length and width of the tetrahedral generators were investigated. The influence of longitudinal spacing was also studied. The experimental results showed that tetrahedral vortex generators had a certain anti-fouling capability. The height and width of the tetrahedral vortex generator had a significant impact on the characteristics of particulate fouling. The height had the largest influence on the characteristics of particulate fouling, the width had the second largest influence, while the length had the least influence. The anti-fouling capability of tetrahedral vortex generator was improved by increasing the height and the width, while the capability was worsened by increasing the length. Tetrahedral vortex generators with height of 6 mm, length of 20 mm, and width of 30 mm showed the best anti-fouling capability within the scope of the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

A :

Area of heated surface (m2)

c p :

Specific heat capacity (J·kg−1·°C−1)

d h :

Hydraulic diameter (m)

k :

Overall heat transfer coefficient at fouling conditions (W·K−1·m−2)

k 0 :

Overall heat transfer coefficient at clean conditions without MgO particles (W·K−1·m−2)

q v :

Flow (m3·s−1)

R f :

Fouling resistance (m2·K·W−1)

t f,in :

Inlet temperature of fluid (°C)

t f,out :

Outlet temperature of fluid (°C)

t sy :

Water bath temperature (°C)

v :

Flow rate (m·s−1)

ε :

Relative error of fouling resistance

η :

Fluid viscosity (Pa·s)

References

  1. A. Urkiola, U. Fernandez-Gamiz, I. Errasti, E. Zulueta, Computational characterization of the vortex generated by a vortex generator on a flat plate for different vane angles. J. Aerosp. Sci. Technol. 65, 18–25 (2017)

    Article  Google Scholar 

  2. L. Tian, W. Bai, S.H. Xue, Z.P. Huang, Q.W. Wang, Numerical study of influence of longitudinal vortex generator on flow and heat transfer in rectangular channel. J. J. Eng. Thermophys. 34, 324–327 (2013)

    Google Scholar 

  3. J. Huang, L. Wang, Q.W. Wang, Y.P. Huang, Rese arch progress concerning enhancement of heat transfer by longitudinal vortex generators. J. J. Power Eng. 27, 211–217 (2007)

    Google Scholar 

  4. J.M. Wu, W.Q. Tao, Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator: part A: verification of field synergy principle. J. Int. J. Heat Mass Transf. 51, 1179–1191 (2008)

    Article  Google Scholar 

  5. P. Martinez-Filgueira, U. Fernandez-Gamiz, E. Zulueta, I. Errasti, B. Fernandez-Gauna, Parametric study of low-profile vortex generators. J. Int. J. Hydrog. Energy 42, 1–13 (2017)

    Article  Google Scholar 

  6. J.C. Han, J.J. Huang, C.P. Lee, Augmented heat transfer in square channels with wedge-shaped and delta-shaped turbulence promoters. J. Enhanc. Heat Transf. 1, 37–52 (1993)

    Article  Google Scholar 

  7. T.M. Liou, C.C. Chen, T.W. Tsai, Heat transfer and fluid flow in a square duct with 12 different shaped vortex generators. J. J. Heat Transf. 122, 327–335 (2000)

    Article  Google Scholar 

  8. M. Henze, C.F. Dietz, S.O. Neumann, J. Von Wolfersdorf, B. Weigand, Heat transfer enhancement from single vortex generators, GT2005-68087 ASME Turbo Expo 2005, June 6–9, 2005, Reno-Tahoe, Nevada, USA, 2005

  9. C.F. Dietz, M. Henze, S.O. Neumann, J. Von Wolfersdorf, B. Weigand, The effects of vortex structures on heat transfer and flow field behind arrays of vortex generators. J. J. Enhanc. Heat Transf. 16, 171–188 (2009)

    Article  Google Scholar 

  10. M. Henze, J. von Wolfersdorf, Influence of approach flow conditions on heat transfer behind vortex generators. Int. J. Heat Mass Transf. 54, 279–287 (2011)

    Article  Google Scholar 

  11. M. Henze, J. von Wolfersdorf, B. Weigand, C.F. Dietz, S.O. Neumann, Flow and heat transfer characteristics behind vortex generators-A benchmark dataset. Int. J. Heat Fluid Flow 32, 318–328 (2011)

    Article  Google Scholar 

  12. Z. Tao, P.Y. Zhu, L.M. Song, J. Li, Z.P. Feng, Thermal performance global optimization and knowledge discovery of delta-shaped vortex generators. J. Propuls. Technol. 38, 2298–2305 (2017)

    Google Scholar 

  13. R.L. Webb, M.H. Jaber, L.M. Chamra, Enhanced Tubes For Electric Utility Steam Condensers, in EPRI Condenser Technology Conference, Boston, 1990

  14. S.Z. Tang, F.L. Wang, Q.L. Ren, Y.L. He, Fouling characteristics analysis and morphology prediction of heat exchangers with a particulate fouling model considering deposition and removal mechanisms. J. Fuel 203, 725–738 (2017)

    Article  Google Scholar 

  15. Z.M. Xu, B. Dong, X.Y. Du, B.L. Wang, Experimental study on particle fouling in plate heat exchangers. J. Chin. Soc. Power Eng. 33, 539–543 (2013)

    Google Scholar 

  16. H.X. Li, G.Q. Li, W. Li, Analysis of in tubes particulate fouling characteristic. J. Zhejiang Univ. (Eng. Sci.) 46, 1671–1677 (2012)

    Google Scholar 

  17. R. Blochl, H. Muller-Steinhagen, Influence of particle size and particle/fluid combination on particulate fouling in heat exchangers. Can. J. Chem. Eng. 68, 585–591 (1990)

    Article  Google Scholar 

  18. H.E. Ahmed, M.Z. Yusoff, M.N.A. Hawlader, M.I. Ahmed, B.H. Salman, A.S. Kerbeet, Turbulent heat transfer and nanofluid flow in a triangular duct with vortex generators. Int. J. Heat Mass Transf. 105, 495–504 (2017)

    Article  Google Scholar 

  19. M. Khoshvaght-Aliabadi, Z. Baneshi, S.F. Khaligh, Analysis on performance of nanofluid-cooled vortex-generator channels with variable longitudinal spacing among delta-winglets. J. Appl. Therm. Eng. 122, 1–10 (2017)

    Article  Google Scholar 

  20. B. Bansal, X.D. Chen, H. Müller-Steinhagen, Use of non-crystallising particles to mitigate crystallisation fouling. J. Int. Commun. Heat Mass Transf. 30, 695–706 (2003)

    Article  Google Scholar 

  21. Z.M. Han, Z.M. Xu, J.T. Wang, Numerical simulation on heat transfer characteristics of rectangular vortex generators with a hole. Int. J. Heat Mass Transf. 126, 993–1001 (2018)

    Article  Google Scholar 

  22. J. Tu, X.M. Zhang, H.Y. Li, R.T. Lin, Thermal Experimental Basis (Higher Education Press, Beijing, 1986)

    Google Scholar 

  23. H.Q. Zhang, Testing and Calculate Method Study on Thermal Performance and Flow Pressure Drop Characteristics of a Plate Heat Exchanger (Harbin Institute of Technology, Harbin, 2006)

    Google Scholar 

  24. Z. Shayfull, S. Sharif, A.M. Zain, R.M. Saad, M.A. Fairuz, Warpage Analysis with straight drilled and conformal cooling channels on front panel housing by using taguchi method. J. Key Eng. Mater. 594–595, 593–603 (2014)

    Google Scholar 

  25. A.M. Jacobi, R.K. Shah, Heat transfer surface enhancement through the use of longitudinal vortices:a review of recent progress. J. Exp. Therm. Fluid Sci. 11, 295–309 (1995)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant number 51476025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Lin Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, ZM., Cheng, YL., Han, ZM. et al. Influence of Size of Tetrahedral Vortex Generators on Characteristics of MgO Particulate Fouling. Int J Thermophys 40, 40 (2019). https://doi.org/10.1007/s10765-019-2504-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2504-6

Keywords

Navigation