Skip to main content

Simulation of Particulate Fouling and its Influence on Friction Loss and Heat Transfer on Structured Surfaces using Phase-Changing Mechanism

  • Chapter
  • First Online:
OpenFOAMĀ®

Abstract

Numerical simulations of particulate fouling using highly resolved Large-Eddy Simulations (LES) are carried out for a turbulent flow through a smooth channel with a single spherical dimple or square cavity (dimple depth/cavity depth to dimple diameter/cavity side length ratio of \(t/D = 0.261\)) at \(\text {Re}_D = 42{,}000\). Therefore, a new multiphase method for the prediction of particulate fouling on structured heat transfer surfaces is introduced into OpenFOAMĀ® and further described. The proposed method is based on a combination of the Lagrangian Particle Tracking (LPT) and Eulerian approaches. Suspended particles are simulated according to their natural behavior by means of LPT as solid particles, whereas the carrier phase is simulated using the Eulerian approach. The first numerical results obtained from LES approve the capabilities of the proposed method and reveal a superior fouling performance of the spherical dimple due to asymmetric vortex structures, compared to the square cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P.Ā Ligrani, International Journal of Rotating Machinery 2013, 32 (2013)

    ArticleĀ  Google ScholarĀ 

  2. H.Ā Mueller-Steinhagen, Heat Transfer Eng. 32, 1 (2013)

    ArticleĀ  Google ScholarĀ 

  3. M.Ā Sommerfeld, Particle Motion in Fluids - VDI Heat Atlas (Springer, 2010)

    Google ScholarĀ 

  4. T.C. Crow, J.D. Schwarzkopf, M.Ā Sommerfeld, Y.Ā Tsuji, Multiphase flows with droplets and particles, 2nd edn. (CRC Press, Taylor & Francis, 2011)

    Google ScholarĀ 

  5. A.Ā Putnam, ARS Journal 31, 1467 (1961)

    Google ScholarĀ 

  6. P.G. Saffman, J. Fluid Mech. 22, 385 (1965)

    ArticleĀ  Google ScholarĀ 

  7. P.G. Saffman, J. Fluid Mech. 31, 624 (1968)

    ArticleĀ  Google ScholarĀ 

  8. R.Ā Mei, Int. J. Multiphase Flow 18, 145 (1992)

    ArticleĀ  Google ScholarĀ 

  9. F.Ā Loeffler, W.Ā Muhr, Chem. Ing. Tech. 44, 510 (1972)

    ArticleĀ  Google ScholarĀ 

  10. E.Ā Heinl, M.Ā Bohnet, Powder Technol. 159, 95 (2005)

    ArticleĀ  Google ScholarĀ 

  11. A.Ā Yoshizawa, K.Ā Horiuti, J. Phys. Soc. Jpn. 54, 2834 (1985)

    ArticleĀ  Google ScholarĀ 

  12. W.Ā Kim, S.Ā Menon, in AIAA, Aerospace Sciences Meeting and Exhibit, 33 rd, Reno, NV (1995)

    Google ScholarĀ 

  13. M.Ā Germano, U.Ā Piomelli, P.Ā Moin, W.H. Cabot, Phys. Fluids 3, 1760 (1991)

    ArticleĀ  Google ScholarĀ 

  14. R.Ā Bloechl, H.Ā Mueller-Steinhagen, The Canadian Journal of Chemical Engineering 68, 585 (1990)

    ArticleĀ  Google ScholarĀ 

  15. S.Ā Wetchagarun, A numerical study of turbulent two-phase flows. Ph.D. thesis, University of Washington (2008)

    Google ScholarĀ 

  16. V.I. Terekhov, S.V. Kalinina, Y.M. Mshvidobadse, Journal of Enhanced Heat Transfer 4, 131 (1997)

    ArticleĀ  Google ScholarĀ 

  17. J.Ā Turnow, N.Ā Kornev, S.Ā Isaev, E.Ā Hassel, Heat Mass Transfer. 47, 301 (2011)

    ArticleĀ  Google ScholarĀ 

  18. M.A. Elyyan, A.Ā Rozati, D.K. Tafti, Int. J. Heat Mass Transfer 51, 2950 (2007)

    ArticleĀ  Google ScholarĀ 

Download references

Acknowledgements

The authors would like to thank the German Research Foundation (DFG, grant KO 3394/10-1 and INST 264/113-1 FUGG) and the North-German Supercomputing Alliance (HLRN) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann Turnow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasper, R., Turnow, J., Kornev, N. (2019). Simulation of Particulate Fouling and its Influence on Friction Loss and Heat Transfer on Structured Surfaces using Phase-Changing Mechanism. In: NĆ³brega, J., Jasak, H. (eds) OpenFOAMĀ® . Springer, Cham. https://doi.org/10.1007/978-3-319-60846-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60846-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60845-7

  • Online ISBN: 978-3-319-60846-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics