Skip to main content
Log in

Thermal and Flow Behavior of a Droplet Fluid Wetted by Parallel Hydrophobic Walls

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermal analysis of a locally heated droplet located in two parallel plates with hydrophobic surfaces is considered. The spacing between the parallel plates is altered to modify the three-phase contact line of the droplet on both hydrophobic surfaces. The thermal state of the walls is altered via changing temperature difference between the parallel plates while initiating the droplet heat transfer. In this case, the bottom plate temperature is increased, while the top plate temperature is kept constant. The thermal field developed inside the droplet is obtained numerically incorporating the conditions used in the experiments. The influence of the droplet volume on the Nusselt and the Bond numbers is examined for the cases of droplets formed (i) on a hydrophobic plate and (ii) in between two parallel plates with hydrophobic wetting state. It is found that the droplet wetted by the parallelly located hydrophobic plates alters the circulation cell structure formed inside the droplet. Temperature field extends further inside the droplet as the wetted diameter is extended on the hydrophobic surfaces. The Nusselt number attains larger values for the two-plate case than the free droplet on a single plate case. The Bond number remains less than unity for the free and two-plate wetted droplets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Suryanarayana, Y. Bayazitoglu, Int. J. Thermophys. 12, 137 (1991). https://doi.org/10.1007/BF00506127

    Article  ADS  Google Scholar 

  2. S. Berry, R. Hyers, L. Racz, B. Abedian, Int. J. Thermophys. 26, 1565 (2005). https://doi.org/10.1007/s10765-005-8104-7

    Article  ADS  Google Scholar 

  3. M. Adachi, T. Aoyagi, A. Mizuno, M. Watanabe, H. Kobatake, H. Fukuyama, Int. J. Thermophys. 29, 2006 (2008). https://doi.org/10.1007/s10765-008-0533-7

    Article  ADS  Google Scholar 

  4. A. Al-Sharafi, B.S. Yilbas, H. Ali, Appl. Therm. Eng. 128, 92 (2018). https://doi.org/10.1016/j.applthermaleng.2017.08.171

    Article  Google Scholar 

  5. Q. Li, Y. Yu, P. Zhou, H. Yan, Appl. Therm. Eng. 132, 490 (2017). https://doi.org/10.1016/j.applthermaleng.2017.12.105

    Article  Google Scholar 

  6. B. Peng, X. Ma, Z. Lan, W. Xu, R. Wen, Int. J. Heat Mass Transf. 83, 27 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.069

    Article  Google Scholar 

  7. A. Al-Sharafi, H. Ali, B.S. Yilbas, A.Z. Sahin, M. Khaled, N. Al-Aqeeli, F. Al-Sulaiman, Int. J. Therm. Sci. 102, 239 (2016). https://doi.org/10.1016/j.ijthermalsci.2015.11.013

    Article  Google Scholar 

  8. X. Jiang, L. Tian, X. Liu, T. Li, Colloids Surf. A 545, 31 (2018). https://doi.org/10.1016/j.colsurfa.2018.02.006

    Article  Google Scholar 

  9. J.H. Moon, M. Cho, S.H. Lee, Int. J. Heat Mass Transf. 97, 308 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.041

    Article  Google Scholar 

  10. L. Jiao, R. Chen, X. Zhu, Q. Liao, Int. J. Heat Mass Transf. 94, 180 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.050

    Article  Google Scholar 

  11. A. Al-Sharafi, B.S. Yilbas, H. Ali, Int. J. Heat Mass Transf. 122, 749 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.032

    Article  Google Scholar 

  12. M. Gao, P. Kong, L.-X. Zhang, Int. Commun. Heat Mass Transf. 93, 93 (2018). https://doi.org/10.1016/j.icheatmasstransfer.2018.03.007

    Article  Google Scholar 

  13. W.Y.D. Yong, Z. Zhang, G. Cristobal, W.S. Chin, Colloids Surf. A 460, 151 (2014). https://doi.org/10.1016/j.colsurfa.2014.03.039

    Article  Google Scholar 

  14. F. Heib, M. Schmitt, Coatings 6, 57 (2016). https://doi.org/10.3390/coatings6040057

    Article  Google Scholar 

  15. A. Al-Sharafi, B.S. Yilbas, H. Ali, J. Heat Transf. 139, 092004 (2017). https://doi.org/10.1115/1.4036388

    Article  Google Scholar 

  16. M. De Santo, C. Liguori, A. Pietrosanto, IEEE Trans. Instrum. Meas. 49, 1101 (2000). https://doi.org/10.1109/19.872937

    Article  Google Scholar 

  17. D. Tam, V. von Arnim, G. McKinley, A. Hosoi, J. Fluid Mech. 624, 101 (2009). https://doi.org/10.1017/S0022112008005053

    Article  ADS  Google Scholar 

  18. A.-T. Chai, V. Arpaci (1994), https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19950008129.pdf

  19. G. Lu, Y.-Y. Duan, X.-D. Wang, D.-J. Lee, Int. J. Heat Mass Transf. 54, 4437 (2011). https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.039

    Article  Google Scholar 

  20. (2018), http://www.comsol.com/comsol-multiphysics

  21. J. Mackenzie, W. Mekwi, IMA J. Numer. Anal. 32, 888 (2011). https://doi.org/10.1093/imanum/drr021

    Article  Google Scholar 

  22. J. Lin, H. Chen, Y. Ji, Y. Zhang, Colloids Surf. A 411, 111 (2012). https://doi.org/10.1016/j.colsurfa.2012.06.047

    Article  Google Scholar 

  23. P. Aussillous, D. Quéré, J. Fluid Mech. 512, 133 (2004). https://doi.org/10.1017/S0022112004009747

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of King Fahd University of Petroleum and Minerals (KFUPM) through Projects# IN171001 to accomplish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bekir Sami Yilbas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Sharafi, A., Yilbas, B.S. & Al-Qahtani, H. Thermal and Flow Behavior of a Droplet Fluid Wetted by Parallel Hydrophobic Walls. Int J Thermophys 40, 35 (2019). https://doi.org/10.1007/s10765-019-2499-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-019-2499-z

Keywords

Navigation