Skip to main content
Log in

Lattice Boltzmann Simulations for Melting and Resolidification of Ultrashort Laser Interaction with Thin Gold Film

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The interaction between the laser and material is commonly described by the macroscale method, two-temperature model (TTM), and the microscale method, molecular dynamics. In the present paper, the melting and resolidification of ultrashort laser interaction with thin gold film is investigated in terms of a meso-scale method. The lattice Boltzmann method (LBM) including the electron–phonon collision term is established. A fixed grid approach is applied in the phonon subsystem to describe the phase change. The transition zone between solid and liquid is treated as the porous medium. The results predicted by the LBM coincide with the experiment data quite well. In addition, the detailed comparisons between the TTM with interfacial tracking method and the LBM are conducted. The influences of the laser fluences and pulse widths on the transition phase are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

a :

Thermal diffusion coefficient (m2·s−1)

C :

Heat capacity (J·m−3·K−1)

F :

External force (N)

F l :

Liquid fraction

G :

Electron–lattice coupling factor (W·m−3·K−1)

h m :

Latent heat of melting (J·kg−1)

J :

Heat source fluence of laser (J·m−2)

k :

Electron wave vector (m−1)

k B :

Boltzmann constant (J·K−1)

L :

Thickness of gold film (m)

M k, k :

Electron–phonon matrix element

m :

Mass (kg)

N :

Number density of atom (m−3)

q :

Phonon wave vector (m−1)

R :

Reflectivity of gold film

R g :

Gas constant for gold (J·kg−1·K−1)

S :

Heat source of unit volume (W·m−3)

s :

Interfacial location (m)

T :

Temperature (K)

T l,I :

Interfacial temperature for lattices (K)

t :

Time (s)

t p :

Full width at half maximum (FWHM) pulse width (s)

U :

Potential energy coefficient

V :

Phase space

v :

Velocity (m·s−1)

w :

Weighting factor

x :

Coordinate (m)

δ :

Optical penetration depth (m)

δ b :

Ballistic range (m)

Δl :

Length of the transition zone (m)

ɛ :

Energy (J)

λ :

Thermal conductivity (W·m−1·K−1)

ℏ:

Planck constant (J·s)

ξ :

Radius of phase transition zone (K)

ρ :

Density (kg·m−3)

Γ :

Relaxation time for the collision between different particles (s)

τ :

Relaxation time for the collision in the homogeneous particles (s)

ω :

Frequency (s−1)

Ω:

Collision term

D:

Debye

e:

Electron

eq:

Thermal equilibrium state

F:

Fermi

i:

Initial

I:

Interfacial

l:

Lattice

ph:

Phonon

s:

Sound

References

  1. P. Hannaford, Femtosecond Laser Spectroscopy (Springer, Berlin, 2005)

    Book  Google Scholar 

  2. D. Bourell, M. Wohlert, N. Harlan, S. Das, J. Beaman, Adv. Eng. Mater. 4, 666 (2002)

    Article  Google Scholar 

  3. W.N. Su, P. Erasenthiran, P.M. Dickens, P.I. Mech, Eng. C-J. Mec. 217, 127 (2003)

    Google Scholar 

  4. J. Huang, Y. Zhang, J.K. Chen, Int. J. Heat Mass Transf. 52, 3091 (2009)

    Article  Google Scholar 

  5. A.K. Upadhyay, H.M. Urbassek, J. Phys. D Appl. Phys. 40, 3518 (2007)

    Article  ADS  Google Scholar 

  6. S.L. Anisimov, B.L. Kapeliovich, T.L. Perel’ man, Sov. Phys. JETP 39, 375 (1974)

    ADS  Google Scholar 

  7. T.Q. Qiu, C.L. Tien, ASME J. Heat Transf. 115, 835 (1993)

    Article  Google Scholar 

  8. J.K. Chen, J.E. Beraun, Numer. Heat Transf. A 40, 1 (2001)

    ADS  Google Scholar 

  9. D.Y. Tzou, J. Heat Transf. 117, 8 (1995)

    Article  Google Scholar 

  10. J.K. Chen, D.Y. Tzou, J.E. Beraun, Int. J. Heat Mass Transf. 49, 307 (2006)

    Article  Google Scholar 

  11. I.H. Chowdhury, X. Xu, Numer. Heat Transf. A 44, 219 (2003)

    Article  ADS  Google Scholar 

  12. C. Konrad, Y.W. Zhang, Y. Shi, Int. J. Heat Mass Transf. 50, 2236 (2007)

    Article  Google Scholar 

  13. Y.W. Zhang, J.K. Chen, J. Appl. Phys. 104, 054910 (2008)

    Article  ADS  Google Scholar 

  14. Y.W. Zhang, J.K. Chen, ASME J. Heat Transf. 130, 062401 (2008)

    Article  Google Scholar 

  15. Y. Ren, J.K. Chen, Y. Zhang, Int. J. Heat Mass Transf. 55, 1620 (2012)

    Article  Google Scholar 

  16. J. Huang, Y. Zhang, J.K. Chen, Appl. Phys. A 95, 643 (2009)

    Article  ADS  Google Scholar 

  17. J. Huang, Y.W. Zhang, J.K. Chen, M. Yang, Front. Energy 6, 1 (2012)

    Article  Google Scholar 

  18. Y. Ren, C.W. Cheng, J.K. Chen, Y. Zhang, D.Y. Tzou, Int. J. Therm. Sci. 70, 32 (2013)

    Article  Google Scholar 

  19. Q. Peng, Y. Zhang, Y. He, Y. Mao, Int. J. Heat Mass Transf. 61, 675 (2013)

    Article  Google Scholar 

  20. L. Zhou, L. Li, Appl. Phys. A 116, 2157 (2014)

    Article  ADS  Google Scholar 

  21. Y. Yamashita, T. Yokomine, S. Ebara, A. Shimizu, Int. J. Thermophys. 27, 627 (2006)

    Article  ADS  Google Scholar 

  22. L. Yang, Y. Gan, Y. Zhang, J.K. Chen, Appl. Phys. A 106, 725 (2012)

    Article  ADS  Google Scholar 

  23. P. Ji, Y. Zhang, J. Phys. D Appl. Phys. 46, 495108 (2013)

    Article  Google Scholar 

  24. A.A. Mohamad, Lattice Boltzmann Method, Fundamentals and Engineering Applications with Computer Codes (Springer, London, 2011)

    MATH  Google Scholar 

  25. G. de Fabritiis, A. Mancini, D. Mansutti, S. Succi, Int. J. Mod. Phys. C Comput. Phys. Phys. Comput. 9, 1405 (1998)

    ADS  Google Scholar 

  26. W. Miller, J. Cryst. Growth 230, 263 (2001)

    Article  ADS  Google Scholar 

  27. A.D. Brent, V.R. Voller, K.J. Reid, Numer. Heat Transf. 13, 297 (1988)

    Article  ADS  Google Scholar 

  28. W. Miller, S. Succi, D. Mansutti, Phys. Rev. Lett. 86, 3578 (2001)

    Article  ADS  Google Scholar 

  29. D. Chatterjee, S. Chakraborty, Phys. Lett. A 341, 320 (2005)

    Article  ADS  Google Scholar 

  30. D. Chatterjee, S. Chakraborty, Phys. Lett. A 351, 359 (2006)

    Article  ADS  Google Scholar 

  31. S.C. Mishra, N.C. Behera, A.K. Garg, A. Mishra, Int. J. Heat Mass Transf. 51, 4447 (2008)

    Article  Google Scholar 

  32. C. Körner, E. Attar, P. Heinl, J. Mater. Process. Technol. 211, 978 (2011)

    Article  Google Scholar 

  33. J. Zhao, P. Cheng, Int. J. Heat Mass Transf. 110, 94 (2017)

    Article  Google Scholar 

  34. S.I. Anisimov, Proc. SPIE 2793, 192 (1997)

    Article  Google Scholar 

  35. P.B. Allen, Phys. Rev. Lett. 59, 1460 (1987)

    Article  ADS  Google Scholar 

  36. J.M. Ziman, Electrons and Phonons (Oxford Univ. Press, London, 1960)

    MATH  Google Scholar 

  37. M.I. Kaganov, I.M. Lifshitz, L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957)

    Google Scholar 

  38. J.K. Chen, W.P. Latham, J.E. Beraun, J. Laser Appl. 17, 63 (2005)

    Article  Google Scholar 

  39. E.A. Semma, M.E. Ganaoui, R. Bennacer, C. R. Mecanique 335, 295 (2007)

    Article  ADS  Google Scholar 

  40. S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Phys. Rev. Lett. 59, 1962 (1987)

    Article  ADS  Google Scholar 

  41. T. Juhasz, H.E. Elsayed-Ali, X.H. Hu, W.E. Bron, Phys. Rev. B 45, 13819 (1992)

    Article  ADS  Google Scholar 

  42. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, J. Opt. Soc. Am. B 13, 459 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Natural Science Foundation of China under Grant No. 51476102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wu, M. & Zhou, L. Lattice Boltzmann Simulations for Melting and Resolidification of Ultrashort Laser Interaction with Thin Gold Film. Int J Thermophys 39, 88 (2018). https://doi.org/10.1007/s10765-018-2409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2409-9

Keywords

Navigation