Advertisement

Investigation of Thermophysical Properties of Thermal Degraded Biodiesels

  • H. R. Regatieri
  • E. L. Savi
  • G. V. B. Lukasievicz
  • E. Sehn
  • L. S. Herculano
  • N. G. C. Astrath
  • L. C. Malacarne
ICPPP 19
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena

Abstract

Biofuels are an alternative to fossil fuels and can be made from many different raw materials. The use of distinct catalyst and production processes, feedstocks, and types of alcohol results in biofuels with different physical and chemical properties. Even though these diverse options for biodiesel production are considered advantageous, they may pose a setback when quality specifications are considered, since different properties are subject to different reactions during usage, storage and handling. In this work, we present a systematic characterization of biodiesels to investigate how accelerated thermal degradation affects fuel properties. Two different types of biodiesel, commercially obtained from distinct feedstocks, were tested. The thermal degradation process was performed by maintaining the temperature of the sample at \(140 \,^{\circ }\hbox {C}\) under constant air flux for different times: 0 h, 3 h, 6 h, 9 h, 12 h, 24 h and 36 h. Properties such as density, viscosity, activation energy, volumetric thermal expansion coefficient, gross caloric value, acid value, infrared absorption, and temperature coefficient of the refractive index were used to study the thermal degradation of the biodiesel samples. The results show a significant difference in fuel properties before and after the thermal degradation process suggesting the formation of undesirable compounds. All the properties mentioned above were found to be useful to determine whether a biodiesel sample underwent thermal degradation. Moreover, viscosity and acid value were found to be the most sensitive characteristics to detect the thermal degradation process.

Keywords

Biofuels Oxidative stability Thermal degradation Thermal properties 

Notes

Acknowledgements

We would like to acknowledge the Brazilian agencies: Coordination for the Improvement of Higher Education Personnel Foundation (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)), National Board for Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ)), and State of Paraná Araucária Foundation for Support to Scientific and Technological Development (Fundação Araucária de Apoio ao Desenvolvimento Científico e Tecnológico do Estado do Paraná (FA)) for the financial support.

References

  1. 1.
    S. Jain, M.P. Sharma, Renew. Sust. Energy Rev. 14, 667 (2010)CrossRefGoogle Scholar
  2. 2.
    G. Knothe, Prog. Energy Combust. 36, 364 (2010)CrossRefGoogle Scholar
  3. 3.
    G. Knothe, Fuel Process. Technol. 88, 669 (2007)CrossRefGoogle Scholar
  4. 4.
    S. Jain, M.P. Sharma, Renew. Sustain. Energy Rev. 15, 438 (2011)CrossRefGoogle Scholar
  5. 5.
    J. Pullen, K. Saeed, Renew. Sustain. Energy Rev. 16, 5924 (2012)CrossRefGoogle Scholar
  6. 6.
    Z. Yaakob, B. Narayanan, S. Padikkaparambil, S. Unni, M. Akbar, Renew. Sustain. Energy Rev. 35, 136 (2014)CrossRefGoogle Scholar
  7. 7.
    R. Dunn, J. Am. Oil Chem. Soc. 79, 915 (2009)CrossRefGoogle Scholar
  8. 8.
    R. Dunn, Energy Fuel 22, 657 (2008)CrossRefGoogle Scholar
  9. 9.
    M.M. Conceio, V.J. Fernandes Jr., A.S. Araujo, M.F. Farias, I.M.G. Santos, A.G. Souza, Energy Fuel 21, 1522 (2007)CrossRefGoogle Scholar
  10. 10.
    F. Lacoste, L. Lagardere, Eur. J. Lipid. Sci. Tech. 105, 149 (2003)CrossRefGoogle Scholar
  11. 11.
    H. Li, S. Niu, C. Lu, S. Cheng, Manage. Energy Convers. 98, 81 (2015)CrossRefGoogle Scholar
  12. 12.
    R. Ferrari, V. Oliveira, A. Scabio, Sci. Agric. (Piracicaba, Braz.) 62, 291 (2005)CrossRefGoogle Scholar
  13. 13.
    G. Knothe, R0. Dunn, J. Am. Oil. Chem. Soc. 80, 1021 (2003)CrossRefGoogle Scholar
  14. 14.
    A. Monyem, J.H. Van Gerpen, Biomass Bioenerg. 20, 317 (2001)CrossRefGoogle Scholar
  15. 15.
    A. Monyem, J.H. Van Gerpen, M. Canakci, Trans. ASAE 44, 35 (2001)CrossRefGoogle Scholar
  16. 16.
    A. Monyem, M. Canakci, J.H. Van Gerpen, Appl. Eng. Agric. 16, 373 (2000)CrossRefGoogle Scholar
  17. 17.
    W.C. Silva, M.P.P. Castro, V.H. Perez, F.A. Machado, L. Mota, M.S. Sthel, Energy 114, 1093 (2016)CrossRefGoogle Scholar
  18. 18.
    R. Lin, Y. Zhu, L.L. Tavlarides, Fuel 117, 981 (2014)CrossRefGoogle Scholar
  19. 19.
    A.M. Ashraful, H.H. Masjuki, M.A. Kalam, S.M.A. Rahman, M. Habibullah, M. Syazwan, Energy Fuels 28, 1081 (2014)CrossRefGoogle Scholar
  20. 20.
    J. Zhou, Y. Xiong, Y. Gong, X. Liu, Fuel 202, 23 (2017)CrossRefGoogle Scholar
  21. 21.
    E.L. Savi, L.S. Herculano, G.V.B. Lukasievicz, A.S. Torquato, M.L. Baesso, N.G.C. Astrath, L.C. Malacarne, Energy Fuel 31, 7 (2017)CrossRefGoogle Scholar
  22. 22.
    Brazilian Agency of Petroleum, Natural Gas and Biodiesel (ANP). Resolução ANP 45, 25.8.2014 (2015)Google Scholar
  23. 23.
    L. Grunberg, A. Nissan, Nature 164, 799 (1949)ADSCrossRefGoogle Scholar
  24. 24.
    A. Steimacher, A.N. Medina, A.C. Bento, J.H. Rohling, M.L. Baesso, V.C.S. Reynoso, S.M. Lima, M.N. Petrovich, D.W. Hewak, J. Non-Cryst, Solids 348, 240 (2004)Google Scholar
  25. 25.
    Q. Wen, J. Shen, R. Gieleciak, K.H. Michaelian, J.H. Rohling, N.G.C. Astrath, M.L. Baesso, Int. J. Thermophys. 35, 930 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    J. Shen, G.C. Astrath, P.R.B. Pedreira, F.B. Guimares, R. Gieleciak, Q. Wen, K.H. Michaelian, C. Fairbridge, L.C. Malacarne, J.H. Rohling, M.L. Baesso, Fuel 163, 324 (2016)CrossRefGoogle Scholar
  27. 27.
    B. Pelegrini, E. Sudati, F. R, A. Moreira, I. Ferreira, A. Sampaio, N. Kimura, M. Lima, Fuel 199, 627 (2017)CrossRefGoogle Scholar
  28. 28.
    D.M.M. Pinho, V.O. Santos Jr., V.M.L. Santos, M.C.S. Oliveira, M.T. Silva, P.G.T. Piza, A.C. Pinto, M.J.C. Rezende, P.A.Z. Suares, Fuel 136, 136 (2014)CrossRefGoogle Scholar
  29. 29.
    S.V. Araújo, B.S. Rocha, F.M.T. Luna, E.M. Rola Jr., D.C.S. Azevedo, C.L. Cavalcante Jr., Fuel Process. Technol. 92, 1152 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • H. R. Regatieri
    • 1
  • E. L. Savi
    • 2
  • G. V. B. Lukasievicz
    • 1
  • E. Sehn
    • 1
  • L. S. Herculano
    • 1
  • N. G. C. Astrath
    • 2
  • L. C. Malacarne
    • 2
  1. 1.Departamento de FísicaUniversidade Tecnológica Federal do ParanáMedianeiraBrazil
  2. 2.Departamento de FísicaUniversidade Estadual de MaringáMaringáBrazil

Personalised recommendations