Skip to main content
Log in

Emission of Gas and \(\hbox {Al}_{2}\hbox {O}_{3}\) Smoke in Gas–Al Particle Deflagration: Experiments and Emission Modeling for Explosive Fireballs

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Emission of gas and \(\hbox {Al}_{2}\hbox {O}_{3}\) smoke within the deflagration of \(\hbox {H}_{2}{-}\hbox {O}_{2}\)–{\(\hbox {N}_{2}{-}\hbox {CO}_{2}\)}–Al particles has been studied in a closed combustion chamber at pressures of up to 18 bar and at gas temperatures of up to 3700 K. Measurements of radiance intensity were taken using a five wavelength pyrometer (0.660 \(\upmu \hbox {m}\), 0.850 \(\upmu \hbox {m}\), 1.083 \(\upmu \hbox {m}\), 1.260 \(\upmu \hbox {m}\), 1.481 \(\upmu \hbox {m}\)) and a grating spectrometer in the range (4.10 \(\upmu \hbox {m}\) to 4.30 \(\upmu \hbox {m}\)). In order to characterize the aluminum oxide smoke size and temperature, an inversion method has been developed based on the radiation transfer equation and using pyrometer measurements and thermochemical calculations of \(\hbox {Al}_{2}\hbox {O}_{3}\) smoke volume fractions. Temperatures in combustion gas have been determined using a method based on the assumed blackbody head of the 4.26 \(\upmu \hbox {m}\) \(\hbox {CO}_{2}\) emission line and on its spectral shift with pressure and temperature. For validation purpose, this method has been applied to measurements obtained when calibrated alumina particles are injected in a combustion chamber prior to gaseous deflagrations. This mathematical inversion method was developed to investigate explosive fireballs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

\(d_\mathrm{P} \) :

Particle diameter (\(\upmu \hbox {m}\))

\(f_\mathrm{v} \) :

Volume fraction

\(K_\lambda \) :

Spectral absorption coefficient (\(\hbox {m}^{-1}\))

k :

Absorptive part of the complex refractive index

\(L_\lambda \) :

Spectral radiance (\(\hbox {W} \cdot \hbox {m}^{-2}\cdot \hbox {sr}^{-1} \cdot \upmu \hbox {m}^{-1})\)

\(L_\lambda ^0 \) :

Spectral blackbody radiance

m :

Complex refractive index

n :

Refractive part of the complex refractive index

P :

Pressure (bar)

T :

Temperature (K)

x :

Molar fraction or abscissa

\(\varepsilon _\lambda \) :

Emissivity

\(\beta _\lambda \) :

Extinction coefficient

\(\sigma _\lambda \) :

Scattering coefficient or standard deviation

\(\lambda \) :

Wavelength (\(\upmu \hbox {m}\))

References

  1. A.L. Kuhl, Mixing in explosion, Lawrence Livermore National Laboratory, Livermore, Report, UCRL-JC-115690 (1993)

  2. L. Munier, PhD Thesis, Univ. Provence, Aix Marseille I, France (2011)

  3. L.E. Fried, W.M. Howard, P.C. Souers, Cheetah 2.0 user’s manual, Lawrence Livermore National Laboratory, Livermore, CA, Report, UCRL-MA-117541, Rev. 5 (1998)

  4. L.S. Rothman, I.E. Gordon, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, V. Boudon, L.R. Brown, A. Campargue, J.-P. Champion, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, S. Fally, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, I. Kleiner et al., J. Quant. Spectrosc. Rad. Transf. 110, 533–572 (2009)

    Article  ADS  Google Scholar 

  5. L.S. Rothman et al., J. Quant. Spectrosc. Rad. Transf. 130, 4–50 (2013)

    Article  ADS  Google Scholar 

  6. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Rad. Transf. 111, 2139–2150 (2010)

    Article  ADS  Google Scholar 

  7. S.A. Tashkun, V.I. Perevalov, J. Quant. Spectrosc. Rad. Transf. 112, 1403–1410 (2011)

    Article  ADS  Google Scholar 

  8. M.F. Modest, Radiative Heat Transfer (McGraw-Hill, New York, 1993)

    Google Scholar 

  9. C. Badiola, R.J. Gill, E.L. Dreizin, Combust. Flame 158, 2064–2070 (2011)

    Article  Google Scholar 

  10. X. Zhu, M. Schoenitz, E.L. Dreizin, J. Phys. Chem. C 113, 6768–6773 (2009)

    Article  Google Scholar 

  11. S. Goroshin, J. Mamen, A. Higgins, T. Bazyn, N. Glumac, H. Krier, Proc. Combust. Inst. 31, 2011–2019 (2007)

    Article  Google Scholar 

  12. P. Escot Bocanegra, Ph.D.thesis, Univ. Orléans, France (2007)

  13. D.L. Parry, M.Q. Brewster, J. Thermophys. 5, 142–149 (1991)

    Article  Google Scholar 

  14. S. Goroshin, D.L. Frost, J. Levine, A. Yoshinaka, F. Zhang, Prop. Explos. Pyrotech. 31, 169–181 (2006)

  15. K.L. Cashdollar, I.A. Zlochower, J. Loss Prev. Process. Ind. 20, 337–348 (2007)

    Article  Google Scholar 

  16. P. Chelin, C. Camy-Peyret, V. Pina, P. Alkhoury, D. Davidenko, Combust. Flame 140, 319–331 (2005)

    Article  Google Scholar 

  17. A. Lefrançois, G. Baudin, C. Le Gallic, P. Boyce, J.P. Coudoing, Proceedings of the 12th International Conference Symposium on detonation, San Diego, California (2002)

  18. C.L. Tien, B.L. Drolen, Ann. Rev. Numer. Fluid Mech. Heat Transf. 1, 1–32 (1987)

    Article  ADS  Google Scholar 

  19. D. Davidenko,, PhD Thesis, Univ. Orleans, France (2005)

  20. P.R. Santhanam, E.L. Dreizin, Characteristics of metal combustion obtained from constant volume explosion experiments. In: 48th AIAA Aerospace Sciences Meeting, Orlando, Florida, paper 2010-0178 (2010)

  21. D. Ramel, PhD Thesis, Univ. Paris Nanterre, France (2008)

  22. M.W. Beckstead, Brigham Young Univ (Provo, Utah, 2004)

    Google Scholar 

  23. M.W. Beackstead, Y. Liang, K.V. Pudduppakkam, Combust. Explos. Shock Waves 41, 622–638 (2005)

    Article  Google Scholar 

  24. R.H. French, H. Müllejans, D.J. Jones, J. Am. Ceram. Soc. 81, 2549 (1998)

    Article  Google Scholar 

  25. V.K. Bityukov, V.A. Petrov, Appl. Phys. Res. 5, 51–71 (2013)

    Article  Google Scholar 

  26. P. Lynch, H. Krier, N. Glumac, J. Thermophys. 24, 301–308 (2010)

    Article  Google Scholar 

  27. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  28. W.E. Meador, W.R. Weaver, J. Atmos. Sci. 37, 630–643 (1980)

    Article  ADS  Google Scholar 

  29. BIPM, IEC, IFCC, ISO, IUPAC, IUPAP and OIML guide to the expression of uncertainty measurement 2nd edition, ISBN 92-67-10188-1995 (French normative document NF ENV 13005) (1995)

  30. E.L. Fried, P.C. Souers, Propellants Explos. Pyrotech. 21, 215–223 (1996)

Download references

Acknowledgements

Support of this work from the French Ministry of Defense, DGA, is gratefully acknowledged. The authors are grateful to Vladimir M. Belski from the Russian Federal Nuclear Center-VNIIEF, Institute of Physics of Explosion, Sarov, Nizhni, Novgorod, Russia, for their help to characterize the \(-\,200\) mesh Aldrich aluminum powder. They are also grateful to the anonymous referees and to the English advisors for their valuable help in improving the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Ranc-Darbord.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranc-Darbord, I., Baudin, G., Genetier, M. et al. Emission of Gas and \(\hbox {Al}_{2}\hbox {O}_{3}\) Smoke in Gas–Al Particle Deflagration: Experiments and Emission Modeling for Explosive Fireballs. Int J Thermophys 39, 36 (2018). https://doi.org/10.1007/s10765-018-2360-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2360-9

Keywords

Navigation