Skip to main content

Advertisement

Log in

Simulation and Experimental Study on Thermal Conductivity of [EMIM][DEP] + \(\mathbf{H}_\mathbf{2}{} \mathbf{O}\) + SWCNTs Nanofluids as a New Working Pairs

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this paper, the single-wall carbon nanotubes (SWCNTs) were dispersed into ionic liquid, 1-ethyl-3-methylimidazolium diethylphosphate ([EMIM][DEP]), and its aqueous solution [EMIM][DEP](1) + \(\hbox {H}_{2}\hbox {O}(2)\) to enhance the thermal conductivity of base liquids, which will be the promising working pairs for absorption heat pumps and refrigerators. The enhancement effects on thermal conductivity were studied by experiment and molecular dynamic simulation (MD) methods. The thermal conductivities of [EMIM][DEP] + SWCNTs (INF) and [EMIM][DEP](1) + \(\hbox {H}_{2}\hbox {O}(2)\) + SWCNT(SNF) both with SWCNT mass fraction of 0.5, 1, and 2 (wt%) were measured by transient hot-wire method. The results indicate that the enhancement ratio of thermal conductivity of INF, and SNF can approach 1.30 when SWCNT is 2 (wt%). Moreover, SWCNTs has a higher enhancement ratio than multi-wall carbon nanotubes (MWCNTs). Density and thermal conductivity of [EMIM][DEP], [EMIM][DEP](1) + \(\hbox {H}_{2}\hbox {O}(2)\), INF and SNF systems, together with self-diffusion coefficients of \(\hbox {[EMIM]}^{+}\), \(\hbox {[DEP]}^{-}\), [EMIM][DEP] and water in solution [EMIM][DEP](1) + \(\hbox {H}_{2}\hbox {O}(2)\), were investigated by MD simulations. The results indicate that the maximum relative error between the simulated and experimental densities is about 2 %, and the simulated self-diffusion coefficient of [EMIM][DEP] is in the order of magnitude of \(10^{-11}\,\hbox {m}^{2}\cdot \hbox {s}^{-1}\). The average relative deviation for the simulated thermal conductivity of [EMIM][DEP](1) + \(\hbox {H}_{2}\hbox {O}(2)\), INF and SNF from experimental ones are 23.57 %, 5 %, and 5 %, respectively. In addition, the contributions of kinetic energy, potential energy, and virial and partial enthalpy terms to thermal conductivity were also calculated. The results indicate that virial term’s contribution to thermal conductivity is the maximum, which accounts for 75 % to 80 % of total thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(D_{\mathrm{i}}\) :

Self-diffusion coefficients, \(\hbox {m}^{2}\cdot \hbox {s}^{-1}\)

\(k_{\mathrm{eff}}\) :

Thermal conductivity of nanofluids (INF and SNF), \(\hbox {W}\cdot \hbox {m}^{-1}\cdot \hbox {K}^{-1}\)

\(k_{\mathrm{f}}\) :

Thermal conductivity of [EMIM][DEP] and its aqueous solution, \(\hbox {W}\cdot \hbox {m}^{-1}\cdot \hbox {K}^{-1}\)

\(k_{0}\) and \(k_{1}\) :

The fitting parameters

MSD :

Mean-square displacement, \({\AA ^{2}} \)

T :

Temperature, K

\(x_{1}\) :

Mole fraction of [EMIM][DEP] in solutions

\(\rho _{\mathrm{eff}}\) :

Density of nanofluids (INF and SNF), \(\hbox {g}\cdot \hbox {cm}^{-3}\)

\(\rho _{\mathrm{f}}\) :

Density of [EMIM][DEP] and its aqueous solutions, \(\hbox {g}\cdot \hbox {cm}^{-3}\)

References

  1. A. Coronas, M. Valles, S.K. Chaudhari, K.R. Patil, Appl. Therm. Eng. 16, 335 (1996)

    Article  Google Scholar 

  2. J.D. Holbrey, K.R. Seddon, Clean Prod. Process. 1, 223 (1999)

    Google Scholar 

  3. K.S. Kim, S.Y. Park, S. Choi, H. Lee, J. Chem. Eng. Data 49, 1550 (2004)

    Article  Google Scholar 

  4. M.B. Shiflett, A. Yokozeki, AIChE J. 52, 1205 (2006)

    Article  Google Scholar 

  5. A. Yokozeki, M.B. Shiflett, Appl. Energy 84, 1258 (2007)

    Article  Google Scholar 

  6. A. Yokozeki, M.B. Shiflett, Ind. Eng. Chem. Res. 49, 9496 (2010)

    Article  Google Scholar 

  7. J. Ren, Z. Zhao, X. Zhang, J. Chem. Thremodyn. 43, 576 (2011)

    Article  Google Scholar 

  8. Z. He, Z. Zhao, X. Zhang, H. Feng, Fluid Phase Equilib. 298, 83 (2010)

    Article  Google Scholar 

  9. X. Zhang, D. Hu, Appl. Therm. Eng. 31, 3316 (2011)

    Article  Google Scholar 

  10. D. Zheng, L. Dong, W. Huang, X. Wu, N. Nie, Renew. Sustain. Energy Rev. 37, 47 (2014)

    Article  Google Scholar 

  11. A.P. Fröba, M.H. Rausch, K. Kraeminski, D. Assenbaum, P. Wasserscheid, A. Leipertz, Int. J. Thermophys. 31, 2059 (2010)

    Article  ADS  Google Scholar 

  12. H. Xie, Z. Zhao, J. Zhao, H. Gao, Chin. J. Chem. Eng. 24, 331 (2016)

    Article  Google Scholar 

  13. H. Babaei, P. Keblinski, J.M. Khodadadi, J. Appl. Phys. 112, 054310 (2012)

    Article  ADS  Google Scholar 

  14. M.S. Kelkar, W. Shi, E.J. Maginn, Ind. Eng. Chem. Res. 47, 9115 (2008)

    Article  Google Scholar 

  15. C.A. Nieto de Castro, M.J.V. Lourenco, A.P.C. Ribeiro, E. Langa, S.I.C. Vieira, J. Chem. Eng. Data 55, 653 (2010)

    Article  Google Scholar 

  16. M.J. Javanmardi, K. Jafarpur, J. Heat Trans. 135, 042401 (2013)

    Article  Google Scholar 

  17. J. de Andrade, E.S. Böes, H. Stassen, J. Phys. Chem. B 106, 3546 (2002)

    Article  Google Scholar 

  18. J. de Andrade, E.S. Böes, H. Stassen, J. Phys. Chem. B 106, 13344 (2002)

    Article  Google Scholar 

  19. M.G. Del Pópolo, G.A. Voth, J. Phys. Chem. B 108, 1744 (2004)

    Article  Google Scholar 

  20. M. Xing, J. Yu, R. Wang, Appl. Therm. Eng. 87, 344 (2015)

    Article  Google Scholar 

  21. Y. Nie, C. Li, A. Sun, H. Meng, Z. Wang, Energy Fuel 20, 2083 (2006)

    Article  Google Scholar 

  22. G. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 36, 1367 (2015)

    Article  ADS  Google Scholar 

  23. M.J. Assael, C.F. Chen, I. Metaxa, W.A. Wakeham, Int. J. Thermophys. 25, 971 (2004)

    Article  ADS  Google Scholar 

  24. K.D. Antoniadis, G.J. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 37, 1 (2016)

    Article  Google Scholar 

  25. M.L.V. Ramires, C.A.N.D. Castro, Y. Nagasaka, A. Nagashima, M.J. Assael, W.A. Wakeham, J. Phys. Chem. Ref. Data 24, 1377 (1995)

    Article  ADS  Google Scholar 

  26. M. Xing, J. Yu, R. Wang, Int. J. Heat Mass Transf. 88, 609 (2015)

    Article  Google Scholar 

  27. M. Alaghemandi, E. Algaer, M.C. Bohm, F.M. Plathe, Nanotechnology 20, 115704 (2009)

    Article  ADS  Google Scholar 

  28. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman Jr., J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 09, Revision A.01, Gaussian, Inc., Wallingford CT (2009)

  29. C.M. Breneman, K.B. Wiberg, J. Comput. Chem. 11, 361 (1990)

    Article  Google Scholar 

  30. Z.P. Liu, S.P. Huang, W.C. Wang, J. Phys. Chem. B 108, 12978 (2004)

    Article  Google Scholar 

  31. A.A. Chen, R.V. Pappu, J. Phys. Chem. B 111, 11884 (2007)

    Article  Google Scholar 

  32. J.P. Ryckaert, G. Ciccotti, H.J.C. Berendsen, J. Comput. Phys. 23, 321 (1977)

    Article  ADS  Google Scholar 

  33. J.H. Walther, R. Jaffe, T. Halicioglu, P. Koumoutsakos, J. Phys. Chem. B 105, 9980 (2001)

    Article  Google Scholar 

  34. M.H. Ghatee, A.R. Zolghadr, F. Moosavi, Y. Ansari, J. Chem. Phys. 136, 124706 (2012)

    Article  ADS  Google Scholar 

  35. D.J. Evans, G. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Elsevier, London, 1990), pp. 45–56

    MATH  Google Scholar 

  36. C. Hoheisel, Theoretical Treatment of Liquids and Liquid Mixtures (Elsevier, Amsterdam, 1993)

    Google Scholar 

  37. J. Eapen, J. Li, S. Yip, Phys. Rev. Lett. 98, 28302 (2007)

    Article  ADS  Google Scholar 

  38. K.D. Sattler, Handbook of Nanophysics: Nanoparticles and Quantum Dots (CRC Press, Boca Raton, 2010)

    Google Scholar 

  39. Y. Xuan, Q. Li, Int. J. Heat Fluid Flow 21, 58 (2000)

    Article  Google Scholar 

  40. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  41. L. Martinez, R. Andrade, E.G. Birgin, J.M. Martinez, J. Comput. Chem. 30, 2157 (2009)

    Article  Google Scholar 

  42. R.W. Hockney, Methods Comput. Phys. 9, 135 (1970)

    Google Scholar 

  43. S. Nosé, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  44. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)

    Article  ADS  Google Scholar 

  45. T.I. Morrow, E.J. Maginn, J. Phys. Chem. B 106, 12807 (2002)

    Article  Google Scholar 

  46. M.H. Kowsari, S. Alavi, M. Ashrafizaadeh, B. Najafi, J. Chem. Phys. 129, 224508 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51376036). The authors want to thanks “Ling Yun” Super Computing Center of Dalian University of Technology for providing the free computational hours and the open sources of LAMMPS: http://lammps.sandia.gov provided by Sandia National Laboratories. The authors also want to thanks Prof. Luo Yi’s research group in Dalian University of Technology for helping us with the theoretical calculation in Gaussian 09 A.01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongchang Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zhao, Z., Zhang, X. et al. Simulation and Experimental Study on Thermal Conductivity of [EMIM][DEP] + \(\mathbf{H}_\mathbf{2}{} \mathbf{O}\) + SWCNTs Nanofluids as a New Working Pairs. Int J Thermophys 39, 41 (2018). https://doi.org/10.1007/s10765-018-2359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2359-2

Keywords

Navigation