Skip to main content
Log in

Thermal Effusivity Determination of Metallic Films of Nanometric Thickness by the Electrical Micropulse Method

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films’ thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Ma, X. Zhang, Int. J. Heat Mass Transf. 58, 639–651 (2013)

    Article  Google Scholar 

  2. H.G. Craighead, Science 290, 1532–1535 (2000)

    Article  ADS  Google Scholar 

  3. B. Feng, Z. Li, X. Zhang, Thin Solid Films 517, 2803–2807 (2009)

    Article  ADS  Google Scholar 

  4. H.D. Wang, J.H. Liu, X. Zhang, Z.Y. Guo, K. Takahashi, Heat Mass Transf. 47, 893–898 (2011)

    Article  ADS  Google Scholar 

  5. R. Bachmann, F.J. DiSalvo, T.H. Geballe, R.L. Greene, R.E. Howard, C.N. King, H.C. Kirsch, K.N. Lee, R.E. Schwall, H.U. Thomas, R.B. Zubeck, Rev. Sci. Instrum. 43, 205–214 (1972)

    Article  ADS  Google Scholar 

  6. P. Nath, K.L. Chopra, Thin Solid Films 18, 29–37 (1973)

    Article  ADS  Google Scholar 

  7. C.A. Paddock, G.L. Eesly, J. Appl. Phys. 60, 285–290 (1986)

    Article  ADS  Google Scholar 

  8. K. Hatori, N. Taketoshi, T. Baba, H. Ohta, Rev. Sci. Instrum. 76, 114901–114907 (2005)

    Article  ADS  Google Scholar 

  9. D.G. Cahill, Rev. Sci. Instrum. 61, 802–808 (1990)

    Article  ADS  Google Scholar 

  10. T. Kemp, T.A.S. Srinivas, R. Fetting, W. Ruppel, Rev. Sci. Instrum. 66, 176–181 (1995)

    Article  ADS  Google Scholar 

  11. R.T. Swimm, Appl. Phys. Lett. 42, 955–957 (1983)

    Article  ADS  Google Scholar 

  12. J. Philip, Rev. Sci. Instrum. 67, 3621–3623 (1996)

    Article  ADS  Google Scholar 

  13. P. Charpentier, F. Lepoutre, L. Bertrand, J. Appl. Phys. 53, 608–614 (1982)

    Article  ADS  Google Scholar 

  14. J.H. Cho, J.A. Lim, J.T. Han, H.W. Jang, J.L. Lee, K. Cho, Appl. Phys. Lett. 86, 171906 (2005)

    Article  ADS  Google Scholar 

  15. R.D. Maldonado, A.I. Oliva, H.G. Riveros, Surf. Rev. Lett. 13, 557–565 (2006)

    Article  ADS  Google Scholar 

  16. J.M. Lugo, V. Rejon, A.I. Oliva, in in 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), IEEE Publication, Piscataway, 2012), pp. 1–5

  17. J.M. Lugo, A.I. Oliva, H.G. Riveros, O. Ceh, in in 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), (IEEE Publication, Piscataway, 2010), pp. 504–509

  18. J.M. Lugo, J.E. Corona, A.I. Oliva, in in 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), (IEEE Publication, Piscataway, 2013), pp. 375–379

  19. http://www.analog.com/media/en/technical-documentation/data-sheets/AD734.pdf

  20. D. Halliday, R. Resnick, K. Krane, Physics, 4th edn. (Wiley, Hoboken, 1992)

    Google Scholar 

  21. A.I. Oliva, J.M. Lugo, Int. J. Thermophys. 37, 35–45 (2016)

    Article  ADS  Google Scholar 

  22. J.M. Lugo, A.I. Oliva, J. Thermophys. Heat Transf. 30, 452–460 (2015)

    Article  Google Scholar 

  23. J. Hartmann, P. Voigt, M. Reichling, J. Appl. Phys. 81, 2966–2972 (1997)

    Article  ADS  Google Scholar 

  24. N. Taketoshi, T. Baba, A. Ono, Meas. Sci. Technol. 12, 2064–2073 (2001)

    Article  ADS  Google Scholar 

  25. J.S. Jin, J.S. Lee, O. Kwon, Appl. Phys. Lett. 92, 171910–171913 (2008)

    Article  ADS  Google Scholar 

  26. F. Kelemen, Thin Solid Films 36, 199–203 (1976)

    Article  ADS  Google Scholar 

  27. J.M. Camacho, A.I. Oliva, Thin Solid Films 515, 1881–1885 (2006)

    Article  ADS  Google Scholar 

  28. T. Yamane, Y. Mori, S. Katayama, M. Todoki, J. Appl. Phys. 82, 1153–1156 (1997)

    Article  ADS  Google Scholar 

  29. J.M. Lugo, C. Ayora, V. Rejon, A.I. Oliva, Thin Solid Films 585, 24–30 (2015)

    Article  ADS  Google Scholar 

  30. J.M. Lugo, V. Rejon, A.I. Oliva, J. Heat Transf. 137, 051601–0516011 (2015)

    Article  Google Scholar 

  31. S.L. Lai, G. Ramanath, L.H. Allen, P. Infante, Appl. Phys. Lett. 70, 43–45 (1997)

    Article  ADS  Google Scholar 

  32. J. Yu, Z. Thang, F. Zhang, H. Ding, Z. Huang, J. Heat Transf. 132, 012403–012406 (2010)

    Article  Google Scholar 

  33. J. Yu, Z.A. Tang, F.T. Zhang, G.F. Wei, L.D. Wang, Chin. Phys. Lett. 22, 2429–2432 (2005)

    Article  ADS  Google Scholar 

  34. E. Marin, Phys. Teach. 44, 432–434 (2006)

    Article  ADS  Google Scholar 

  35. P.J. McCluskey, J.J. Vlassak, Thin Solid Films 518, 7093–7106 (2010)

    Article  ADS  Google Scholar 

  36. J. Martan, N. Semmar, C. Leborgne, E. Le Menn, J. Mathias, Appl. Surf. Sci. 247, 57–63 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors thank to J. E. Corona and Mauricio Romero for their technical support. Special thanks to Dr. A.I. Oliva-Avilés for the revision and suggestions on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Lugo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lugo, J.M., Oliva, A.I. Thermal Effusivity Determination of Metallic Films of Nanometric Thickness by the Electrical Micropulse Method. Int J Thermophys 38, 18 (2017). https://doi.org/10.1007/s10765-016-2157-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2157-7

Keywords

Navigation