Skip to main content
Log in

Normal Spectral Emissivity Measurement of Molten Cu–Co Alloy Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The normal spectral emissivity of molten Cu–Co alloy with different compositions was measured in the wavelength range of 780 nm to 920 nm and in the temperature range of 1430 K to 1770 K including the undercooled condition by an electromagnetic levitator superimposed with a static magnetic field. The emissivity was determined as the ratio of the radiance from a levitated molten Cu–Co droplet measured by a spectrometer to the radiance from a blackbody calculated by Planck’s law at a given temperature, where a static magnetic field of 2.5 T to 4.5 T was applied to the levitated droplet to suppress the surface oscillation and translational motion of the sample. We found little temperature dependence of the normal spectral emissivity of molten Cu–Co alloy. Concerning the composition dependence, the emissivity decreased markedly above 80 at%Cu and reached that of pure Cu, although its dependence was low between 20 at%Cu and 80 at%Cu. In addition, this composition dependence of the emissivity of molten Cu–Co alloy can be explained well by the Drude free-electron model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

e :

Elementary electric charge (C)

k :

Extinction coefficient (–)

m :

Rest mass of an electron (kg)

\(N^{*}\) :

Number of free electrons per unit volume (\(\hbox {m}^{-3}\))

n :

Refractive index (–)

\(\varepsilon \) :

Emissivity (–)

\(\varepsilon _r, \varepsilon _i\) :

Real and imaginary parts of the complex dielectric constant (–)

\(\varepsilon _0\) :

Permittivity of vacuum (\(\hbox {F} {\cdot } \hbox {m}^{-1}\))

\(\rho _{el}\) :

Electrical resistivity (\(\Omega ^{-1} {\cdot } \hbox {m}^{-1}\))

\(\sigma \) :

Uncertainty (–)

\(\tau \) :

Relaxation time of free electrons (s)

\(\omega \) :

Angular frequency of the electric field (\(\hbox {rad} {\cdot } \hbox {s}^{-1}\))

\(\omega _p\) :

Plasma frequency (\(\hbox {rad} {\cdot } \hbox {s}^{-1}\))

References

  1. H. Kobatake, H. Khosroabadi, H. Fukuyama, Meas. Sci. Technol. 22, 015102 (2011)

    Article  ADS  Google Scholar 

  2. H. Kobatake, H. Khosroabadi, H. Fukuyama, Metall. Mater. Trans. A 43, 2466 (2012)

    Article  Google Scholar 

  3. R. Kurosawa, T. Inoue, Y. Baba, K.-I. Sugioka, M. Kubo, T. Tsukada, H. Fukuyama, Meas. Sci. Technol. 24, 015603 (2013)

    Article  ADS  Google Scholar 

  4. Y. Nakagawa, Acta Metall. Mater. 6, 704 (1958)

    Article  Google Scholar 

  5. X. Song, S.W. Mahon, R.F. Cochrane, B.J. Hickley, M.A. Howson, Mater. Lett. 31, 261 (1997)

    Article  Google Scholar 

  6. I. Yamauchi, N. Ueno, M. Shimaoka, I. Ohnaka, J. Mater. Sci. 33, 371 (1998)

    Article  ADS  Google Scholar 

  7. C.D. Cao, G.P. Gorler, D.M. Herlach, B. Wei, Mater. Sci. Eng. A 325, 503 (2002)

    Article  Google Scholar 

  8. C.D. Cao, D.M. Herlach, M. Kolbe, G.P. Gorler, B. Wei, Scr. Mater. 48, 5 (2003)

    Article  Google Scholar 

  9. L. Battezzati, S. Curiotto, E. Johnson, N.H. Pryds, Mater. Sci. Eng. A 449–451, 7 (2007)

    Article  Google Scholar 

  10. T. Kekesi, M. Uchikoshi, K. Mimura, M. Isshiki, Metall. Mater. Trans. B 32B, 573 (2001)

    Article  Google Scholar 

  11. M. Uchikoshi, H. Shibuya, J. Imaizumi, T. Kekesi, K. Mimura, M. Isshiki, Metall. Mater. Trans. B 41–42B, 448 (2010)

    Article  ADS  Google Scholar 

  12. K.-I. Sugioka, T. Inoue, T. Kitahara, R. Kurosawa, M. Kubo, T. Tsukada, M. Uchikoshi, H. Fukuyama, Metall. Mater. Trans. B 45, 1439 (2014)

    Article  Google Scholar 

  13. T. Kitahara, K. Tanada, S. Ueno, K.-I. Sugioka, M. Kubo, T. Tsukada, M. Uchikoshi, H. Fukuyama, Metall. Mater. Trans. B 46, 2706 (2015)

    Article  Google Scholar 

  14. H. Fukuyama, private communication

  15. K. Nagata, T. Nagane, M. Susa, ISIJ Int. 37, 399 (1997)

    Article  Google Scholar 

  16. H. Watanabe, M. Susa, K. Nagata, Metall. Mater. Trans. B 28, 2507 (1997)

    Article  Google Scholar 

  17. H. Watanabe, M. Susa, H. Fukuyama, K. Nagata, Int. J. Thermophys. 24, 473 (2003)

    Article  Google Scholar 

  18. C. Cagran, B. Wilthan, G. Pottlacher, High Temp. High Press. 35/36, 667 (2003/2007)

  19. C. Cagran, B. Wilthan, G. Pottlacher, Thermochim. Acta 445, 104 (2006)

    Article  Google Scholar 

  20. G. Pottlacher, J. Non Cryst. Solids 250–252, 177 (1999)

    Article  ADS  Google Scholar 

  21. F. Guo, T. Lu, J. Qin, H. Zheng, X. Tian, Phys. B 407, 4108 (2012)

    Article  ADS  Google Scholar 

  22. L. Kirkup, R.B. Frenkel, An Introduction to Uncertainty in Measurement, vol. 35 (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI Grant No. 25289273.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takao Tsukada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueno, S., Nakamura, Y., Sugioka, KI. et al. Normal Spectral Emissivity Measurement of Molten Cu–Co Alloy Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field. Int J Thermophys 38, 16 (2017). https://doi.org/10.1007/s10765-016-2136-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2136-z

Keywords

Navigation