Skip to main content
Log in

Thermal Conductivity Measurement of Molten Cu-Co Alloy Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The thermal conductivity of molten Cu-Co alloy with different compositions around the liquidus line temperature was measured by the periodic laser-heating method using an electromagnetic levitator superimposed with a static magnetic field to suppress convection in a levitated droplet sample. During the measurement, a static magnetic field of 10 T was applied to the levitated droplet. To confirm that the strength of the static magnetic field was sufficient to suppress convection in the droplet, numerical simulations were performed for the flow and thermal fields in an electromagnetically levitated droplet under a static magnetic field, and moreover, for the periodic laser-heating method to determine the thermal conductivity. It was found that the thermal conductivity of molten Cu-Co alloy increased gradually with increasing Cu composition up to 80 at. pct, beyond which it increased markedly and reached that of pure Cu. In addition, it was found that the composition dependence of the thermal conductivity can be explainable by the Wiedemann–Franz law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Nakagawa: Acta Metall. Mater., 1958, vol. 6, pp. 704–11.

    Article  Google Scholar 

  2. X. Song, S.W. Mahon, R.F. Cochrane, B.J. Hickey, and M.A. Howson: Mater. Lett., 1997, vol. 31, pp. 261–66.

    Article  Google Scholar 

  3. I. Yamauchi, N. Ueno, M. Shimaoka, and I. Ohnaka: J. Mater. Sci., 1998, vol. 33, pp. 371–78.

    Article  Google Scholar 

  4. C.D. Cao, G.P. Gorler, D.M. Herlach, and B. Wei: Mater. Sci. Eng. A, 2002, vol. 325, pp. 503–10.

    Article  Google Scholar 

  5. C.D. Cao, D.M. Herlach, M. Kolbe, G.P. Gorler, and B. Wei: Scripta Mater., 2003, vol. 48, pp. 5–9.

    Article  Google Scholar 

  6. L. Battezzati, S. Curiotto, E. Johnson, and N.H. Pryds: Mater. Sci. Eng. A, 2007, vol. 449–451, pp. 7–11.

    Article  Google Scholar 

  7. Y. Baba, T. Inoue, K. Sugioka, H. Kobatake, H. Fukuyama, M. Kubo, and T. Tsukada: Meas. Sci. Technol., 2012, vol. 23, 045103.

    Article  Google Scholar 

  8. T. Nishi, H. Shibata, Y. Waseda, and H. Ohta: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2801–07.

    Article  Google Scholar 

  9. H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, and S. Awaji: Appl. Phys. Lett., 2007, vol. 90, p. 094102.

    Article  Google Scholar 

  10. T. Tsukada, H. Fukuyama, and H. Kobatake: Int. J. Heat Mass Transf., 2007, vol. 50, p. 3054–61.

    Article  Google Scholar 

  11. H. Fukuyama, H. Kobatake, K. Takahashi, I. Minato, T. Tsukada, and S. Awaji: Meas. Sci. Technol., 2007, vol. 18, pp. 2059–66.

    Article  Google Scholar 

  12. H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, and S. Awaji: J. Appl. Phys., 2008, vol. 104, p. 054901.

    Article  Google Scholar 

  13. H. Fukuyama, K. Takahashi, S. Sakashita, H. Kobatake, T. Tsukada, and S. Awaji: ISIJ Int., 2009, vol. 49, pp. 1436–42.

    Article  Google Scholar 

  14. H. Kobatake, H. Fukuyama, T. Tsukada, and S. Awaji: Meas. Sci. Technol., 2010, vol. 21, p. 025901.

    Article  Google Scholar 

  15. K. Sugie, H. Kobatake, M. Uchikoshi, M. Isshiki, K. Sugioka, T. Tsukada, and H. Fukuyama: Jpn. J. Appl. Phys., 2011, vol. 50, p. 11RD04.

    Article  Google Scholar 

  16. J. Brillo, I. Egry, and T. Matsushita: Int. J. Mater. Res., 2006, vol. 97, pp. 1526–32.

    Article  Google Scholar 

  17. T. Kekesi, M. Uchikoshi, K. Mimura, and M. Isshiki: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 573–82.

    Article  Google Scholar 

  18. M. Uchikoshi, H. Shibuya, J. Imaizumi, T. Kekesi, K. Mimura, and M. Isshiki: Metall. Mater. Trans. B, 2010, vol. 41, pp. 448–55.

    Article  Google Scholar 

  19. T. Tsukada, K. Sugioka, T. Tsutsumino, H. Fukuyama, H. Kobatake: Int. J. Heat Mass Transf., 2009, vol. 52, pp. 5152–57.

    Article  Google Scholar 

  20. K. Sugioka, T. Tsukada, H. Fukuyama, H. Kobatake, and S. Awaji: Int. J. Heat Mass Transf., 2010, vol. 53, pp. 4228–32.

    Article  Google Scholar 

  21. Y. Baba, K. Sugioka, M. Kubo, T. Tsukada, K. Sugie, H. Kobatake, and H. Fukuyama: J. Chem. Eng. Jpn, 2011, vol. 44, pp. 321–27.

    Article  Google Scholar 

  22. R.A. Eichel and I. Egry: Z. Metallkd., 1999, vol. 90, pp. 371–75.

    Google Scholar 

  23. M.J. Assael, A.E. Kalyva, and K.D. Antoniadis: J. Phys. Chem. Ref. Data, 2010, vol. 39, p. 033105.

    Article  Google Scholar 

  24. W.F. Gale and T.C. Totemeier: Smithells Metals Reference Book, 8th ed., Elsevier, Inc., Oxford, 2004.

    Google Scholar 

  25. S. Ueno, Y. Nakamura, K. Sugioka, M. Kubo, T. Tsukada, M. Uchikoshi, and H. Fukuyama: Int. J. Thermophys., 2017, vol. 38, p. 16.

    Article  Google Scholar 

  26. F. Guo, T. Lu, J. Qin, H. Zheng, and X. Tian: Physica B, 2012, vol. 407, pp. 4108–13.

    Article  Google Scholar 

  27. NIST-JANAF Thermochemical Tables, 4th ed., American Chemical Society and American Institute of Physics for the National Institute of Standards and Technology, New York, 1998.

  28. G. Pottlacher: J. Noncryst. Solids, 1999, vol. 250–252, pp. 177–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eita Shoji.

Additional information

Manuscript submitted May 16, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, Y., Takahashi, R., Shoji, E. et al. Thermal Conductivity Measurement of Molten Cu-Co Alloy Using an Electromagnetic Levitator Superimposed with a Static Magnetic Field. Metall Mater Trans B 48, 3213–3218 (2017). https://doi.org/10.1007/s11663-017-1103-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1103-9

Keywords

Navigation