Skip to main content
Log in

A Simple Investigation of the Thermal Effusivity of Silver Nanofluid Using Photopyroelectric Technique

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

We investigated the thermal effusivity of silver nanofluids using a microwave technique. During microwave irradiation, silver nanoparticles with a narrow particle size distribution were formed in water and in ethylene glycol, with a polyvinylpyrrolidone stabilizer. We designed and used a front-photopyroelectric technique that employed a metalized polyvinylidene difluoride (PVDF) pyroelectric sensor, with a thermally thick sensor and sample. Using this technique, we calculated the thermal effusivity of the silver nanofluids at a given frequency using the combination of the signal’s normalized amplitude–phase. The thermal effusivity of the nanofluids increased with the number of microwave irradiation cycles, which increased the nanoparticle concentration in the base fluids. A comparison with reported values illustrates the high accuracy obtained from the results of thermal diffusivity, the thermal effusivity of the PVDF sensor, and the thermal effusivity of ethylene glycol as a base fluid (differing by only 1.7 %, 0.5 %, and 2.3 %, respectively). Our method can therefore be used to study nanofluids with varying nanoparticle properties, such as concentration, size, and shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.A. Eastman, U.S. Choi, S. Li, G. Soyez, L.J. Thompson, R.J. DiMelfi, JMNM 2, 629–634 (1999)

    Article  Google Scholar 

  2. S.A. Putnam, D.G. Cahill, P.V. Braun, J. Appl. Phys. 99, 084308 (2006)

    Article  ADS  Google Scholar 

  3. P. Keblinski, J.A. Eastman, D.G. Cahill, Mater. Today 8(6), 36–44 (2005)

    Article  Google Scholar 

  4. K.V. Wong, O. De Leon, Adv. Mech. Eng. 2 (2010)

  5. C. Kleinstreuer, Y. Feng, Nanoscal. Res. Lett. 6, 229 (2011)

    Article  ADS  Google Scholar 

  6. P. Rauwel, E. Rauwel, S. Ferdov, M.P. Singh, Adv. Mater. Sci. Eng. 2015, 2 (2015)

    Google Scholar 

  7. B.K. Salunke, S.S. Sawant, T.K. Kang, D.Y. Seo, Y. Cha, S.A. Moon, B. Alkotaini, E. Sathiyamoorthi, B.S. Kim, J. Nanomater. 2015, 8 (2015)

    Article  Google Scholar 

  8. J. Yang, J. Pan, Acta Mater. 60(12), 4753–4758 (2012)

    Article  Google Scholar 

  9. P. Zhang, P. Li, F. Li, W. Jiang, Z. Cao, J. Sol–Gel. Sci. Technol. 72(2), 398–404 (2014)

    Article  Google Scholar 

  10. H.S. Toh, K. Tschulik, C.B. McAuley, R.G. Compton, Analyst 139(16), 3986–3990 (2014)

    Article  ADS  Google Scholar 

  11. M.N. Nadagouda, T.F. Speth, R.S. Varma, Acc. Chem. Res. 44(7), 469–478 (2011)

    Article  Google Scholar 

  12. S. Joseph, B. Mathew, J. Nanopart. 2014, 9 (2014)

    Article  Google Scholar 

  13. N. Jayaprakash, J.J. Vijaya, L.J. Kennedy, Synth. React. Inorg. Met. Org. Chem. 45(10), 1533–1538 (2015)

    Article  Google Scholar 

  14. M. Noroozi, S. Radiman, A. Zakaria, S. Soltaninejad, Nanoscal. Res. Lett. 9(1), 1–10 (2014)

    Article  Google Scholar 

  15. R. Prasher, P.E. Phelan, P. Bhattacharya, Nano Lett. 6(7), 1529–1534 (2006)

    Article  ADS  Google Scholar 

  16. C.H. Chon, K.D. Kihm, J. Heat Transf. 1(27), 810 (2005)

    Article  Google Scholar 

  17. X. Zhang, H. Gu, M. Fujii, J. Appl. Phys. 100, 044325 (2006)

    Article  ADS  Google Scholar 

  18. S.M.S. Murshed, K.C. Leong, C. Yang, J. Phys. D 39, 5316–5322 (2006)

    Article  ADS  Google Scholar 

  19. J. Shen, A. Mandelis, Rev. Sci. Instrum. 66, 4999–5005 (1995)

    Article  ADS  Google Scholar 

  20. M. Noroozi, B.Z. Azmi, M.M. Moksin, Infrared Phys. Technol. 53(3), 193–196 (2010)

    Article  ADS  Google Scholar 

  21. J. Philip, M.R. Nisha, J. Phys. 214, 012035 (2010)

    Google Scholar 

  22. G. Pan, A. Mandelis, Rev. Sci. Instrum. 69, 2918–2923 (1998)

    Article  ADS  Google Scholar 

  23. G. Gutiérrez-Juárez, R. Ivanov, J.P. Pichardo-Molina, M. Vargas-Luna, J.J. Alvarado-Gil, A. Camacho, Int. J. Thermophys. 29(6), 2102–2115 (2008)

    Article  ADS  Google Scholar 

  24. M. Chirtoc, E.H. Bentefour, C. Glorieux, J. Thoen, Thermochim. Acta 377(1–2), 105–112 (2001)

    Article  Google Scholar 

  25. D. Dadarlat, A. Frandas, Appl. Phys. A 57(3), 235–238 (1993)

    Article  ADS  Google Scholar 

  26. S. Longuemart, A.G. Quiroz, D. Dadarlat, A.H. Sahraoui, C. Kolinsky, J.M. Buisine, E.C. da Silva, A.M. Mansanares, X. Filip, C. Neamtu, Instrum. Sci. Technol. 30(2), 157–165 (2002)

    Article  Google Scholar 

  27. D. Dadarlat, J. Gibkes, D. Bicanic, A. Pasca, J. Food Eng. 30(1–2), 155–162 (1996)

    Article  Google Scholar 

  28. D. Dadarlat, Laser Phys. 19(6), 1330–1339 (2009)

    Article  ADS  Google Scholar 

  29. M. Noroozi, A. Zakaria, M.S. Husin, M.M. Moksin, Z.A. Wahab, Int. J. Thermophys. 34(11), 2136–2143 (2013)

    Article  ADS  Google Scholar 

  30. A.H. Sahraoui, S. Longuemart, D. Dadarlat, S. Delenclos, C. Kolinsky, J.M. Buisine, Rev. Sci. Instrum. 73(7), 2766–2772 (2002)

    Article  ADS  Google Scholar 

  31. V.S. Raykar, A.K. Singh, J. Thermodyn. 2011, 5 (2011)

    Article  Google Scholar 

  32. J.A. Balderas-Lopez, Rev. Mex. Fis. 49(4), 353–357 (2003)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Ministry of Science, Technology and Innovation for supporting this work under Fundamental Research Grant No. 01-02-13-134FR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monir Noroozi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noroozi, M., Zakaria, A., Radiman, S. et al. A Simple Investigation of the Thermal Effusivity of Silver Nanofluid Using Photopyroelectric Technique. Int J Thermophys 37, 84 (2016). https://doi.org/10.1007/s10765-016-2093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-016-2093-6

Keywords

Navigation