Skip to main content
Log in

Thermal Shock Cracking Behavior of a Cylinder Specimen with an Internal Penny-Shaped Crack Based on Non-Fourier Heat Conduction

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal shock cracking of solids is analyzed for a long cylinder subjected to a sudden change of temperature on its outer surface, based on a generalized heat conduction model in which the concepts of phase lags of temperature gradient and heat flux are introduced. The temperature field and associated thermal stress for an un-cracked cylinder are obtained in closed form. Then the thermal stress with an opposite sign is loaded on the crack surface to formulate the crack problem. The thermal stress intensity factor is deduced and given by a Fredholm integral equation. The cracking behavior is discussed and thermal shock resistance of the cylinder is evaluated according to the stress criterion and the fracture mechanics criterion, separately. The effects of phase lags of temperature gradient and heat flux and the crack size on the thermal shock resistance of the cylinder are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.H. Akbarzadeh, Z.T. Chen, Hygrothermal stresses in one-dimensional functionally graded piezoelectric media in constant magnetic field. Compos. Struct. 97, 317–331 (2013)

    Article  Google Scholar 

  2. S.I. Anisimov, B.L. Kapeliovich, T.L. Perel’man, Electron emission from metal surfaces exposed to ultra-short laser pulses. Sov. Phys. JETP 39, 375–377 (1974)

    ADS  Google Scholar 

  3. P.F. Becher, D. Lewis, K.R. Carman, A.C. Gonzalez, Thermal-shock resistance of ceramics: size and geometry-effects in quench tests. Am. Ceram. Soc. Bull. 59(5), 542 (1980)

    Google Scholar 

  4. C. Cattaneo, Sur une forme de l’equation de la chaleur eliminant le paradoxe d’ine propagation instantanee. C. R. Acad. Sci. 247, 431–433 (1958)

    MathSciNet  Google Scholar 

  5. D.M. Chang, B.L. Wang, Transient thermal fracture and crack growth behavior in brittle media based on non-Fourier heat conduction. Eng. Fract. Mech. 94, 29–36 (2012)

    Article  Google Scholar 

  6. Z.T. Chen, K.Q. Hu, Thermo-elastic analysis of a cracked half-plane under a thermal shock impact using the hyperbolic heat conduction theory. J. Therm. Stress. 33(5), 895–912 (2012)

    ADS  Google Scholar 

  7. Z.T. Chen, K.Q. Hu, Hyperbolic heat conduction in a cracked thermoelastic half-plane bonded to a coating. Int. J. Thermophys. 35(4), 342–362 (2012)

  8. Z.T. Chen, K.Q. Hu, Thermoelastic analysis of a cracked substrate bonded to a coating using the hyperbolic heat conduction theory. J. Therm. Stress. 37(3), 270–291 (2014)

    Article  Google Scholar 

  9. T.B. Cheng, W.G. Li, The temperature-dependent ideal tensile strength of ZrB2, HfB2, and TiB2. J. Am. Ceram. Soc. 98(1), 190–196 (2015)

    Article  Google Scholar 

  10. T.B. Cheng, W.G. Li, C.Z. Zhang, D.N. Fang, Unified thermal shock resistance of ultra-high temperature ceramics under different thermal environments. J. Therm. Stress. 37(1), 14–33 (2014)

    Article  Google Scholar 

  11. M. Collin, D. Rowcliffe, Analysis and prediction of thermal shock in brittle materials. Acta Mater. 48(8), 1655–1665 (2000)

    Article  Google Scholar 

  12. M.A. Ezzat, Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Phys. B-Condens. Matter. 406(1), 30–35 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. J.W. Fu, Z.T. Chen, L.F. Qian, K.Q. Hu, Transient thermoelastic analysis of a solid cylinder containing a circumferential crack using the C–V heat conduction model. J. Therm. Stress. 37(11), 1324–1345 (2014)

    Article  Google Scholar 

  14. J.W. Fu, Z.T. Chen, L.F. Qian, Y.D. Xu, Non-Fourier thermoelastic behavior of a hollow cylinder with an embedded or edge circumferential crack. Eng. Fract. Mech. 128, 103–120 (2014)

    Article  Google Scholar 

  15. I.S. Gradshteyn, I.M. Ryzhik, Tables of integrals, series and products (Acadeimic Press, San Diego, 1965)

    MATH  Google Scholar 

  16. J.C. Han, Thermal shock resistance of ceramic coatings. Acta Mater. 55, 3573–3581 (2007)

    Article  Google Scholar 

  17. D.P.H. Hasselman, Approximate theory of thermal stress resistance of brittle ceramics involving creep. J. Am. Ceram. Soc. 50, 454–457 (1969)

    Article  Google Scholar 

  18. D.P.H. Hasselman, Griffith criterion of thermal shock resistance of single phase versus multiphase brittle ceramics. J. Am. Ceram. Soc. 52, 288–289 (1969)

    Article  Google Scholar 

  19. D.P.H. Hasselman, Unified theory of thermal shock fracture initiation and crack propagation in brittle ceramics. J. Am. Ceram. Soc. 52, 600–604 (1969)

    Article  Google Scholar 

  20. D. Jou, J. Casas-Vazouez, G. Lenbon, Extended irreversible thermodynamics. Rep. Progr. Phys. 51, 1105–1179 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  21. W.G. Li, D.Y. Li, R.Z. Wang, D.N. Fang, Numerical simulation for thermal shock resistance of thermal protection materials considering different operating environments. Sci. World J. 2013, 324186 (2013)

    Google Scholar 

  22. W.G. Li, D.J. Li, C.Z. Zhang, D.N. Fang, Modelling the effect of temperature and damage on the fracture strength of ultra-High temperature ceramics. Int. J. Fract. 176(2), 181–188 (2012)

    Article  Google Scholar 

  23. W.G. Li, D.Y. Li, T.B. Cheng, D.N. Fang, Temperature-damage dependent thermal shock resistance model for ultra-high temperature ceramics. Eng. Fract. Mech. 82, 9–16 (2012)

    Article  Google Scholar 

  24. M.J. Maurer, H.A. Thompson, Non-Fourier effects at high heat flux. J. Heat Transf. 95, 284–286 (1973)

    Article  Google Scholar 

  25. N. Noda, R. Ashida, Y. Matsunaga, Stress intensity factors for external and penny-shaped cracks in transversely isotropic cylinders subjected to thermal shock. Arch. Appl. Mech. 64, 383–394 (1994)

    MATH  Google Scholar 

  26. J. Ordonez-Miranda, J.J. Alvarado-Gil, Thermal wave oscillations and thermal relaxation time determination in a hyperbolic heat transport model. Int. J. Therm. Sci. 48(11), 2053–2062 (2009)

    Article  Google Scholar 

  27. J. Ordonez-Miranda, J.J. Alvarado-Gil, On the stability of the exact solutions of the dual-phase lagging model of heat conduction. Nanoscale Res. Lett. 6, 327 (2011)

    Article  ADS  Google Scholar 

  28. V. Peshkov, Second sound in helium II. J. Phys. USSR 8, 381 (1944)

    Google Scholar 

  29. T.Q. Qiu, C.L. Tien, Short-pulse laser heating on metals. Int. J. Heat Mass Transf. 35, 719–726 (1992)

    Article  ADS  Google Scholar 

  30. R. Quintanilla, A condition on the delay parameters in the one-dimensional dual-phase-lag thermoelastic theory. J. Therm. Stress. 26, 713–721 (2003)

    Article  MathSciNet  Google Scholar 

  31. R. Quintanilla, R. Racke, Stability in thermoelasticity of type III. Discret. Contin. Dyn. Syst. Ser. B 3(3), 383–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. F. Song, S.H. Meng, X.H. Xu, Y.F. Shao, Enhanced thermal shock resistance of ceramics through biomimetically inspired nanofins. Phys. Rev. Lett. 104, 125502 (2010)

    Article  ADS  Google Scholar 

  33. H. Tada, P.C. Paris, G.R. Irwin, Stress analysis of cracks handbook (Del Research, St Louis, 1985)

    Google Scholar 

  34. D.Y. Tzou, Thermal shock phenomena under high-rate response in solids, in Annual review of heat and transfer, ed. by Tien Chang-Lin (Hemisphere Publishing Inc, Washington DC, 1992), pp. 111–185

    Google Scholar 

  35. D.Y. Tzou, An engineering assessment to the relaxation time in thermal waves. Int. J. Heat Mass Transf. 36, 1845–1851 (1993)

    Article  MATH  Google Scholar 

  36. D.Y. Tzou, A unified field approach for heat conduction from macro- to micro-scales. Mem. ASME 117, 8–16 (1995)

    Article  Google Scholar 

  37. D.Y. Tzou, The generalized lagging response in small-scale and high-rate heating. Int. J. Heat Mass Transf. 38, 3231–3240 (1995)

    Article  Google Scholar 

  38. D.Y. Tzou, Macro- to microscale heat transfer: the lagging behavior (Wiley, New York, 2014)

    Book  Google Scholar 

  39. D.Y. Tzou, M.N. Ozisik, R.J. Chiffelle, The lattice temperature in the microscopic two-step model. ASME J. Heat Transf. 116, 1034–1038 (1994)

    Article  Google Scholar 

  40. P. Vernotte, Les paradoxes de la theorie continue de l’equation de la chaleur. C. R. Acad. Sci. 246, 3154–3155 (1958)

    MathSciNet  Google Scholar 

  41. B.L. Wang, Transient thermal cracking associated with non-classical heat conduction in cylindrical coordinate system. Acta Mech. Sin. 29(2), 211–218 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  42. B.L. Wang, J.C. Han, Thermal shock resistance of ceramics with temperature-dependent material properties at elevated temperature. Acta Mater. 59, 1373–1382 (2011)

    Article  Google Scholar 

  43. B.L. Wang, J.E. Li, Thermal shock resistance of solids associated with hyperbolic heat conduction theory. Proc. R. Soc. A 469, 2153 (2013)

    MathSciNet  Google Scholar 

  44. B.L. Wang, J.E. Li, C. Yang, Thermal shock fracture mechanics analysis of a semi-infinite medium based on the dual-phase-lag heat conduction model. Proc. R. Soc. A 471, 20140595 (2015)

    Article  ADS  Google Scholar 

  45. S.W. Yu, Q.H. Qin, Damage analysis of thermopiezoelectric properties: part I-crack tip singularities. Theor. Appl. Fract. Mech. 25, 263–277 (1996)

    Article  Google Scholar 

  46. S.W. Yu, Q.H. Qin, Damage analysis of thermopiezoelectric properties: part II-effective crack model. Theor. Appl. Fract. Mech. 25, 279–288 (1996)

    Article  Google Scholar 

  47. A.T. Zehnder, A.J. Rosakis, On the temperature distribution at vicinity of dynamically propagating cracks in 4340 steel. J. Mech. Phys. Solids 39(3), 385–415 (1991)

    Article  ADS  Google Scholar 

  48. R. Zhang, X.Q. Fang, Y. Pang, On the dissipative transient waves in a piezoelectric microplate under strong thermal shock. Waves Random Complex Media 23(1), 1–10 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Science Foundation of China (NSFC) (Project Nos. 11172081 and 11372086) and the Natural Science Foundation of Guangdong Province of China (2014A030313696).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Guo.

Appendices

Appendix 1

The constants \(C_{1m} , C_{2m} \), and \(C_{3m} (m=1, 2)\) are given as

$$\begin{aligned} C_{1m}= & {} c_{11} d_{1m} +c_{13} d_{2m} \lambda _m ,\end{aligned}$$
(35)
$$\begin{aligned} C_{2m}= & {} c_{13} d_{1m} +c_{33} d_{2m} \lambda _m,\end{aligned}$$
(36)
$$\begin{aligned} C_{3m}= & {} c_{44} \left( {d_{1m} \lambda _m -d_{2m} } \right) . \end{aligned}$$
(37)

The constants \(f_m (m=1, 2)\) are given as

$$\begin{aligned} \left\{ {{\begin{array}{l} {f_1 } \\ {f_2 } \\ \end{array} }} \right\} =\left[ {{\begin{array}{ll} {d_{21} }&{}\quad {d_{22} } \\ {C_{31} }&{}\quad {C_{32} } \\ \end{array} }} \right] ^{-1}\left\{ {{\begin{array}{l} 1 \\ 0 \\ \end{array} }} \right\} . \end{aligned}$$
(38)

The function \(\beta _m (s,x)\) is given as

$$\begin{aligned} \left\{ {\beta _m (s,x)} \right\}= & {} \left[ {\Delta (s)} \right] ^{-1}\left\{ {{\begin{array}{l} {\alpha _1 (s,x)} \\ {\alpha _2 (s,x)} \\ \end{array} }} \right\} ,\nonumber \\ \Delta (s)= & {} \left[ {{\begin{array}{l} {\frac{C_{1m} }{\lambda _m }sI_0 (bs/\lambda _m )-\frac{\left( {c_{11} -c_{12} } \right) }{b}d_{1m} I_1 (bs/\lambda _m )} \\ {\frac{C_{3m} }{\lambda _m }sI_1 (bs/\lambda _m )} \\ \end{array} }} \right] , \end{aligned}$$
(39)

where

$$\begin{aligned} \alpha _1 (s,x)= & {} \sum _{m=1}^2 \left[ {\frac{C_{1m} f_m s}{\lambda _m^2 }L_0 \left( {-\frac{s}{\lambda _m }b} \right) -\frac{\left( {c_{11} -c_{12} } \right) }{b}\frac{d_{1m} f_m }{\lambda _m }L_1 \left( {-\frac{s}{\lambda _m }b} \right) } \right] \nonumber \\&\times \sinh \left( {-\frac{s}{\lambda _m }x} \right) ,\end{aligned}$$
(40)
$$\begin{aligned} \alpha _2 (s,x)= & {} \sum _{m=1}^2 {\frac{C_{3m} f_m s}{\lambda _m^2 }L_1 \left( {-\frac{s}{\lambda _m }b} \right) \sinh \left( {-\frac{s}{\lambda _m }x} \right) } , \end{aligned}$$
(41)

and where \(L_{i} (i=0, 1)\) are the ith modified Bessel function of the second kind.

Appendix 2

The material contents are given by beryllium oxide [25]: elastic modulus, \(E_r =397\,\hbox {GPa}, E_z =450\,\hbox {GPa}, G_{rz} =153\,\hbox {GPa}\), Poisson’s ratios, \(v_{r\theta } =0.32, v_{r\theta } =0.16; \) temperature-strain coefficients, \(\alpha _{r} = 2.3\times 10^{-6}\,\mathrm{K}^{-1}, \alpha _{z} = 4.4\times 10^{-6}\,\mathrm{K}^{-1}\).

Accordingly, the stiffness coefficients \(c_{ij} \) and temperature-stress coefficients \(\chi _{ii} \) are as follows:

$$\begin{aligned} c_{11}= & {} 46.3\times 10^{10}\,\mathrm{N}{\cdot }{\mathrm{m}^{-2}}, \quad c_{12} = 16.2\times 10^{10}\,\mathrm{N}{\cdot }{\mathrm{m}^{-2}}, \\ c_{13}= & {} 10.0\times 10^{10}\,\mathrm{N}{\cdot }{\mathrm{m}^{-2}}, \quad c_{33} = 48.2\times 10^{10}\,\mathrm{N}{\cdot }{\mathrm{m}^{-2}}, \\ c_{44}= & {} 15.3\times 10^{10}\,\mathrm{N}{\cdot }{\mathrm{m}^{-2}}, \quad \chi _{11} = 0.107\times 10^{6}\,\hbox {N}{\cdot }\hbox {m}^{-2}{\cdot }{\mathrm{K}^{-1}}, \\ \chi _{33}= & {} 0.212\times 10^{6}\,\hbox {N}{\cdot }\hbox {m}^{-2}{\cdot }{\mathrm{K}^{-1}} \end{aligned}$$

Following the material properties \(c_{ij} \) and \(\chi _{ii} \), the contents \(\mu \) can be calculated by computer: \(\mu =-2.14\times 10^{^{11}}\,\hbox {N}{\cdot }\hbox {m}^{-3}{\cdot }{\mathrm{K}^{-1}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S.L., Wang, B.L. Thermal Shock Cracking Behavior of a Cylinder Specimen with an Internal Penny-Shaped Crack Based on Non-Fourier Heat Conduction. Int J Thermophys 37, 17 (2016). https://doi.org/10.1007/s10765-015-2029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-015-2029-6

Keywords

Navigation