Skip to main content
Log in

Fabrication and Characterization of Nanoporous Silicon Relative Humidity Sensors

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work describes a porous, silicon-based humidity sensor operating under the capacitive transduction principle. One of the aims of this work is to determine the main parameters such as sensitivity, linearity, hysteresis, and time response to step humidity changes of four samples via measurements of their capacitance. The parameters gauged by capacitance measurements were used to explain the dynamics of its operation. The most sensitive sample caused changes in relative humidity of \(74\hbox { nF}{\cdot }\%\hbox {rh}^{-1}\). Hysteresis of at least 3.6 % to 4.6 % was found to occur. Humidity sensor samples synthesized from nanoporous silicon were also analyzed by scanning electron microscopy, image processing, and Raman spectra red shifts. As a result of these measurement and analysis of this work, the best synthesis conditions and nanopore surface and sub-surface diameters for producing high performing humidity sensors were identified. Another aim of this work is to find the optimal pore size from the analysis of image processing and Raman spectra. The optimal porous sizes in relation to the analyzed sensor’s characteristics were found to be between 4 nm and 26 nm. The novelty of this work is to establish the relationship between the capacitance measurements with image processing of SEM images and Raman spectral measurements. The mechanical stability of the samples was also gauged over 3 months utilizing both capacitance and Raman spectral measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Heinonen, M. Anagnostou, S. Bell, M. Stevens, R. Benyon, R. Anita Bergerud, J. Bojkovski, R. Bosma, J. Nielsen, N. Böse, P. Cromwell, A. Kartal Dogan, S. Aytekin, A. Uytun, V. Fernicola, K. Flakiewicz, B. Blanquart, D. Hudoklin, P. Jacobson, A. Kentved, I. Lóio, G. Mamontov, A. Masarykova, H. Mitter, R. Mnguni, J. Otych, A. Steiner, N. Szilágyi Zsófia, D. Zvizdic, Int. J. Thermophys. 33, 1422 (2012)

    Article  ADS  Google Scholar 

  2. D. Hudoklin, J. Bojkovski, J. Nielsen, J. Drnovšek, Measurement 41, 950 (2008)

    Article  Google Scholar 

  3. D. Hudoklin, J. Drnovšek, Int. J. Thermophys. 29, 1652 (2008)

    Article  ADS  Google Scholar 

  4. M. Heinonen, Measurement 17, 183 (1996)

    Article  Google Scholar 

  5. A. Uhlir, Bell Syst. Tech. J. 35, 333 (1956)

    Article  Google Scholar 

  6. L.T. Canham, Appl. Phys. Lett. 57, 1046 (1990)

    Article  ADS  Google Scholar 

  7. A.G. Cullis, L.T. Canham, Nature 353, 335 (1991)

    Article  ADS  Google Scholar 

  8. I. Schechter, M. Ben-Corin, A. Kux, Anal. Chem. 67, 3727 (1995)

    Article  Google Scholar 

  9. L. Seals, J.L. Gole, L.A. Tse, P.J. Hesketh, J. Appl. Phys. 91, 2519 (2002)

    Article  ADS  Google Scholar 

  10. S.E. Lewis, J.R. DeBoer, J.L. Gole, P.J. Hesketh, Sens. Actuators B 110, 54 (2005)

    Article  Google Scholar 

  11. Z.M. Rittersma, A. Splinter, A. Bödecker, W. Benecke, Sens. Actuators B 68, 210 (2000)

    Article  Google Scholar 

  12. M. Björkqvist, J. Salonen, J. Paski, E. Laine, Sens. Actuators A 112, 244 (2004)

    Article  Google Scholar 

  13. G. Di Francia, A. Castaldo, E. Massera, I. Nasti, L. Quercia, I. Rea, Sens. Actuators B 111, 135 (2005)

    Article  Google Scholar 

  14. R.L. Smith, S.D. Collins, J. Appl. Phys. 71, R1 (1992)

    Article  ADS  Google Scholar 

  15. H. Föll, M. Christophersen, J. Carstensen, G. Hasse, Mater. Sci. Eng. R 39, 93 (2002)

    Article  Google Scholar 

  16. X.G. Zhang, Electrochemistry of Silicon and Its Oxide (Kluwer/Plenum, New York, 2001)

    Google Scholar 

  17. O. Bisi, S. Ossicini, L. Pavesi, Surf. Sci. Rep. 38, 1 (2000)

    Article  ADS  Google Scholar 

  18. V. Lehmann, Electrochemistry of Silicon: Instrumentation, Science, Materials, and Applications (Wiley-VCH, Weinheim, 2002)

    Book  Google Scholar 

  19. L. Canham (ed.) Properties of Porous Silicon (Institution of Engineering and Technology, London, 1997)

  20. J.F. Morhange, G. Kanellis, M. Balkanski, Solid State Commun. 31, 805 (1979)

    Article  ADS  Google Scholar 

  21. J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, X. Xie, Appl. Phys. Lett. 69, 200 (1996)

    Article  ADS  Google Scholar 

  22. F. Agullo-Rueda, J.D. Moreno, E. Montoya, R. Guerrero-Lemus, J.M. Martinez-Duart, J. Appl. Phys. 84(4), 2349 (1998)

    Article  ADS  Google Scholar 

  23. G. Faraci, S. Gibilisco, P. Russo, R. Penisi, Phys. Rev. B 73, 033307–1 (2006)

    Article  ADS  Google Scholar 

  24. S.K. Gupta, P.K. Jha, Solid State Commun. 149, 1989 (2009)

    Article  ADS  Google Scholar 

  25. B.K. Patel, R. Mythili, R. Vijayalaxmi, R.K. Soni, S.N. Behera, S.N. Sahu, Physica B 322, 146 (2002)

    Article  ADS  Google Scholar 

  26. Y. Kang, Y. Qiu, Z. Lei, M. Hu, Opt. Laser Eng. 43, 847 (2005)

    Article  Google Scholar 

  27. D. Chakravarty, B.V. Sarada, S.B. Chandrasekhar, K. Saravanan, T.N. Rao, Mater. Sci. Eng. A 528, 7831 (2011)

    Article  Google Scholar 

  28. H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)

    Article  ADS  Google Scholar 

  29. I.H. Campbel, P.M. Fauchet, Solid State Commun. 58, 739 (1986)

    Article  ADS  Google Scholar 

  30. Z. Sui, P.P. Leong, I.P. Herman, G.S. Higashi, H. Temkin, Appl. Phys. Lett. 60, 2086 (1992)

    Article  ADS  Google Scholar 

  31. G. Amato, V. Bullara, N. Brunetto, L. Boarino, Thin Solid Films 276, 204 (1996)

    Article  ADS  Google Scholar 

  32. L. Khriachtchev, M. Räsänen, S. Novikov, L. Pavesi, Appl. Phys. Lett. 85, 1511 (2004)

    Article  ADS  Google Scholar 

  33. N. Korsunska, B. Bulakh, B. Jumayev, L. Khomenkova, V. Yukhymchuk, T. Torchynska, Appl. Surf. Sci. 243, 30 (2005)

    Article  ADS  Google Scholar 

  34. K. Roodenko, I.A. Goldthorpe, P.C. McIntyre, Y.J. Chabal, Phys. Rev. B 82, 115210 (2010)

    Article  ADS  Google Scholar 

  35. J. Lu, X. Cheng, Y. Zhang, X. Zhu, Electrochim. Acta 55, 5084 (2010)

    Article  Google Scholar 

  36. M. Wesolowski, Phys. Rev. B 66, 205207 (2002)

    Article  ADS  Google Scholar 

  37. G. Korotcenkov, B.K. Cho, Crit. Rev. Solid State 35, 153 (2010)

    Article  Google Scholar 

  38. D.C. Giancolli, Physics for Scientists and Engineers, 4th edn. (Pearson, New York, 2009)

    Google Scholar 

  39. F.M. Liu, B. Ren, J.H. Wu, J.W. Yan, X.F. Xue, B.W. Mao, Z.Q. Tian, Chem. Phys. Lett. 382, 502 (2003)

    Article  ADS  Google Scholar 

  40. F. Zhong, Z. Jia, Physica B 411, 77 (2013)

    Article  ADS  Google Scholar 

  41. E. Burstein, Raman Spectroscopy of Solids (Defense Technical Information Center, Fort Belvoir, 1981)

    Google Scholar 

  42. V. Kumar, Nanosilicon (Elsevier, Oxford, 2008)

    Google Scholar 

  43. S. Oğuz Aytekin, R. Ince, A.O. Kodolbaş, Balkan Phys. Lett. 22, 10 (2014)

    Google Scholar 

  44. MATLAB, Image Processing Toolbox User’s Guide (2011–2014)

  45. Y. Kim, J. Lee, Y. Kim, J. Kim, J. Semicond. Technol. Sci. 4, 128 (2004)

    Google Scholar 

  46. Y. Wang, S. Park, J. Yeow, A. Langner, F. Müller, Sens. Actuators B 149, 136 (2010)

    Article  Google Scholar 

  47. H. Kim, N. Cho, Nanoscale Res. Lett. 7, 408 (2012)

    Article  ADS  Google Scholar 

  48. D. Hudoklin, J. Šetina, J. Drnovšek, Int. J. Thermophys. 33, 1595 (2012)

    Article  ADS  Google Scholar 

  49. C.R.B. Miranda, M.R. Baldan, A.F. Beloto, N.G. Ferreira, J. Braz. Chem. Soc. 19, 769 (2008)

    Article  Google Scholar 

  50. P. Granitzer, K. Rumpf, Materials 3, 943 (2010)

    Article  ADS  Google Scholar 

  51. Z.C. Feng, R. Tsu (eds.), Porous Silicon (World Scientific, Singapore, 1994)

Download references

Acknowledgments

We thank Sevcan Ayaksız and Ertuğ Avcı for Raman spectra measurements at Yeditepe University, Istanbul, Turkey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Oguz Aytekin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aytekin, S.O., Ince, R. Fabrication and Characterization of Nanoporous Silicon Relative Humidity Sensors. Int J Thermophys 36, 3421–3439 (2015). https://doi.org/10.1007/s10765-015-1979-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-015-1979-z

Keywords

Navigation