Skip to main content
Log in

Revised Model for the Thermal Conductivity of Multicomponent Electrolyte Solutions and Seawater

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A previously developed model for calculating the thermal conductivity of electrolyte solutions has been revised. The model represents the effect of electrolytes by introducing two terms in addition to the thermal conductivity of the solvent, i.e., a contribution of individual species expressed using modified Riedel coefficients and an ionic strength-dependent term that accounts for interactions between species. The revision improves and simplifies the ionic strength dependence of the species interaction term. The model has been parameterized based on extensive data for binary, ternary, and quaternary aqueous solutions containing the \(\hbox {Na}^{+}, \hbox {K}^{+}, \hbox {Mg}^{2+}, \hbox {Ca}^{2+}, \hbox {Cl}^{-}, \hbox {SO}_{4}^{2-}, \hbox {HCO}_{3}^{-}\), and \(\hbox {Br}^{-}\) ions at temperatures ranging from 273 K to 573 K and pressures up to at least 1000 bar. Good agreement between the calculations and experimental data has been obtained with an overall average deviation of 0.44 %. Further, the model has been used to predict the thermal conductivity of seawater and to evaluate the consistency and accuracy of experimental seawater data in view of those for its key components. While older seawater data suffer from significant discrepancies and are not in satisfactory agreement with the model, the predictions are in an excellent agreement with the recent data of Sharqawy. Finally, a much simplified yet accurate model has been formulated specifically for seawater by recasting the complete model in terms of salinity (rather than concentrations of individual components), temperature, and pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Wang, A. Anderko, Int. J. Thermophys. 33, 235 (2012). doi:10.1007/s10765-012-1154-8

    Article  ADS  Google Scholar 

  2. P. Wang, A. Anderko, Ind. Eng. Chem. Res. 47, 5698 (2008). doi:10.1021/ie071373c

    Article  Google Scholar 

  3. M.H. Sharqawy, J.H. Lienhard, S.M. Zubair, Desalin. Water Treat. 16, 354 (2010)

    Article  Google Scholar 

  4. M.H. Sharqawy, Desalination 313, 97 (2013). doi:10.1016/j.desal.2012.12.010

    Article  Google Scholar 

  5. L.A. Akhmedova-Azizova, I.M. Abdulagatov, J. Solut. Chem. 43, 421 (2014). doi:10.1007/s10953-014-0141-z

    Article  Google Scholar 

  6. L.A. Akhmedova-Azizova, I.M. Abdulagatov, J. Solut. Chem. 38, 1015 (2009). doi:10.1007/s10953-009-9428-x

    Article  Google Scholar 

  7. D.S. Abrams, J.M. Prausnitz, AIChE J. 21, 116 (1975). doi:10.1002/aic.690210115

    Article  Google Scholar 

  8. L. Riedel, Chem. Ing. Tech. 23, 59 (1951)

    Article  Google Scholar 

  9. I.M. Abdulagatov, N.D. Azizov, Int. J. Thermophys. 26, 593 (2005)

    Article  ADS  Google Scholar 

  10. I.M. Abdulagatov, U.B. Magomedov, Int. J. Thermophys. 15, 401 (1994)

    Article  ADS  Google Scholar 

  11. K.M. Abdullaev, V.S. El’darov, A.M. Mustafaev, High Temp. 36, 375 (1998)

    Google Scholar 

  12. G.G. Aseyev, Electrolyte. Properties of Solutions. Methods for Calculation of Multicomponent Systems and Experimental Data on Thermal Conductivity and Surface Tension (Begell House Inc. Publishers, New York, 1999)

  13. M.J. Assael, E. Charitidou, J.C. Stassis, W.A. Wakeham, Ber. Bunsenges. Phys. Chem. 93, 887 (1989)

    Article  Google Scholar 

  14. E.I. Chernen’kaya, G.A. Vernigora, Zh. Prikl. Khim. 45, 1704 (1972)

    Google Scholar 

  15. P.S. Davis, F. Theeuwes, R.J. Bearman, R.P. Gordon, J. Chem. Phys. 55, 4776 (1971)

    Article  ADS  Google Scholar 

  16. V.S. El’darov, Zh. Fiz. Khim. 60, 603 (1986)

    Google Scholar 

  17. V.S. El’darov, High Temp. 41, 327 (2003). doi:10.1023/a:1024282308625

    Article  Google Scholar 

  18. V.S. El’darov, Energetika 1, 57 (2004)

    Google Scholar 

  19. A.F. Kapustinskii, I.I. Ruzavin, Zh. Fiz. Khim. 29, 2222 (1955)

    Google Scholar 

  20. U.B. Magomedov, High Temp. 31, 458 (1993)

    Google Scholar 

  21. U.B. Magomedov, High Temp. 36, 44 (1998)

    Google Scholar 

  22. E. Meyer, Z. Ges, Kälte Ind. 47, 129 (1940)

    Google Scholar 

  23. Y. Nagasaka, H. Okada, J. Suzuki, A. Nagashima, Ber. Bunsenges. Phys. Chem. 87, 859 (1983)

    Article  Google Scholar 

  24. M.L.V. Ramires, C.A.N. de Castro, Int. J. Thermophys. 21, 671 (2000). doi:10.1023/a:1006628419636

    Article  Google Scholar 

  25. M.L.V. Ramires, C.A.N. Decastro, J. Fareleira, W.A. Wakeham, J. Chem. Eng. Data 39, 186 (1994). doi:10.1021/je00013a053

    Article  Google Scholar 

  26. W. Rau, Z. Angew. Phys. 1, 211 (1948)

    Google Scholar 

  27. N.B. Vargaftik, Y.P. Os’minin, Teploenergetika 3, 11 (1956)

    Google Scholar 

  28. V.D. Yusufova, R.I. Pepinov, V.A. Nikolaev, G.M. Guceinov, Inzh. Fiz. Zhur. 29, 600 (1975)

    Google Scholar 

  29. V.J. Castelli, E.M. Stanley, E.C. Fischer, Deep Sea Res. 21, 311 (1974)

    Google Scholar 

  30. D. Caldwell, Deep Sea Res. 21, 131 (1974)

    Google Scholar 

  31. S. Nukiyama, Y. Yoshizawa, J. Soc. Mech. Eng. Jpn. 37, 347 (1934)

    Google Scholar 

  32. R. Tufeu, B. Le Neindre, P. Johannin, Compt. Rend. 262, 229 (1966)

    Google Scholar 

  33. W.H. Emerson, D.T. Jamieson, Desalination 3, 213 (1967)

    Article  Google Scholar 

  34. B.M. Fabuss, A. Korosi, Properties of Seawater and Solutions Containing Sodium Chloride, Potassium Chloride, Sodium Sulphate and Magnesium Sulphate, Office of Saline Water Research Development Progress Report 348 (1968)

  35. D.T. Jamieson, J.S. Tudhope, Desalination 8, 393 (1970)

    Article  Google Scholar 

  36. International Association for the Properties of Water and Steam, Release of the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance IAPWS. www.iapws.org

  37. M.L. Huber, R.A. Perkins, D.G. Friend, J.V. Sengers, M.J. Assael, I.N. Metaxa, K. Miyagawa, R. Hellmann, E. Vogel, J. Phys. Chem. Ref. Data 41, 033102 (2012)

    Article  ADS  Google Scholar 

  38. A.L. Horvath, Handbook of Aqueous Electrolyte Solutions. Physical Properties, Estimation and Correlation Methods (Wiley, New York, 1985)

  39. B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids, 5th edn. (McGraw-Hill, New York, 2001)

    Google Scholar 

  40. F.J. Millero, R. Feistel, D.G. Wright, T.J. McDougall, Deep Sea Res. I 55, 50 (2008). doi:10.1016/j.dsr.2007.10.001

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Anderko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Anderko, A. Revised Model for the Thermal Conductivity of Multicomponent Electrolyte Solutions and Seawater. Int J Thermophys 36, 5–24 (2015). https://doi.org/10.1007/s10765-014-1756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1756-4

Keywords

Navigation