Skip to main content
Log in

Investigation of Thermal Properties of SiC Ceramics Containing Carbon Nanostructures by Photothermal Measurements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work presents an analysis of the influence of graphene reinforcement on properties of silicon carbide composites. Samples were prepared by a spark plasma sintering method. The density and hardness were obtained in the preliminary experiments. The thermal diffusivity was determined by the continuous wave photothermal technique with detection based on infrared radiometry. The thermal diffusivity is in the range of (0.48 to 0.57) cm\(^{2} \,\,{\cdot }\,\, \)s\(^{-1}\) for samples prepared from granulated SiC and in the range of (0.56 to 0.71) cm\(^{2} \,\,{\cdot }\,\, \)s\(^{-1}\) for samples prepared from SiC powder. Thermal properties are correlated with the density of SiC ceramics. The thermal diffusivity of samples with a higher density is lower in comparison to samples with a lower density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Naslain, Compos. Sci. Technol. 64, 155 (2004)

    Article  Google Scholar 

  2. S. Schmidt, S. Beyer, H. Knabe, H. Immich, R. Meistring, A. Gessler, Acta Astronaut. 55, 409 (2004)

    Article  ADS  Google Scholar 

  3. R. Burdzik, Z. Stanik, J. Warczek, Arch. Metall. Mater. 57, 409 (2012)

    Google Scholar 

  4. J.M. Carrapichano, J.R. Gomes, F.J. Oliveira, R.F. Silva, Wear 55, 695 (2003)

    Article  Google Scholar 

  5. E. Thostenson, P. Karandikar, T. Chou, J. Phys. D 38, 3962 (2005)

    Article  ADS  Google Scholar 

  6. G. Zhan, A. Mukherjee, Int. J. Appl. Ceram. Technol. 1, 161 (2004)

    Article  Google Scholar 

  7. B. Yoon, C. Park, H. Kim, J. Am. Ceram. Soc. 90, 3759 (2007)

    Google Scholar 

  8. J. She, J. Yang, N. Kondo, T. Ohji, S. Kanzaki, J. Am. Ceram. Soc. 85, 2852 (2002)

    Article  Google Scholar 

  9. I. Goleki, R.C. Morris, D. Narasimhan, N. Clements, in High Temperature Ceramic–Matrix Composites II; Ceramic Transactions, vol. 58, ed. by A.G. Evans, R. Naslain (American Ceramic Society, Westerville, OH, 1995), p. 231

  10. T.M. Besmann, in High Temperature Ceramic–Matrix Composites II; Ceramic Transactions, vol. 58, ed. by A.G. Evans, R. Naslain (American Ceramic Society, Westerville, OH, 1995), p. 1

  11. M. Takeda, Y. Kagawa, S. Mitsuno, Y. Imai, H. Ichikawa, J. Am. Ceram. Soc. 82, 1579 (1999)

    Article  Google Scholar 

  12. G. Zheng, H. Sano, Y. Uchiyama, K. Kobayashi, K. Suzuki, H. Cheng, J. Ceram. Soc. Jpn. 106, 1155 (1998)

    Article  Google Scholar 

  13. W.B. Hillig, Am. Ceram. Soc. Bull. 73, 56 (1994)

    Google Scholar 

  14. J. Fabig, W. Krenkel, Principles and New Aspects, LSI-Processing, in Advanced Structural Fiber Composites, Proceedings of Topical Symposium V, Forum on New Materials of the 9th CIMTEC-World Ceramics Congress and Forum on New Materials, ed. by P. Vincenzini, vol. 22 (TECHNA, Florence, 1999), pp. 141–148

  15. K. Shobu, E. Tani, K. Kishi, Key Eng. Mater. 159–160, 325 (1999)

    Article  Google Scholar 

  16. K. Nakano, A. Hiroyuki, K. Ogawa, Carbon Fiber Reinforced Silicon Carbide Composites, in Proceedings of 4th European-Conference on Composite Materials (ECCM), Stuttgart, ed. by J. Füller, G. Grüninger, K. Schulte, A.R. Bunsell, A. Massiah (Elsevier Applied Science, London, 1990), pp. 419–424

  17. Y. Katoh, S.-M. Dong, A. Kohyama, Ceram. Trans. 144, 77 (2002)

    Google Scholar 

  18. A. Klimpel, L.A. Dobrzaski, A. Lisiecki, D. Janicki, J. Mater. Proc. Technol. 175, 251 (2006)

    Article  Google Scholar 

  19. J. Mazur, B. Pustelny, Mol. Quantum Acoust. 28, 195 (2007)

    Google Scholar 

  20. J. Bodzenta, J. Juszczyk, M. Chirtoc, Rev. Sci. Instrum. 84, 093702 (2013)

    Article  ADS  Google Scholar 

  21. J. Juszczyk, M. Krzywiecki, J. Bodzenta, Ultramicroscopy 135, 95 (2013)

    Article  Google Scholar 

  22. R.G. Munro, J. Phys. Chem. Ref. Data 26, 1195 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank L. Lipińska from the Institute of Electronic Materials Technology (Poland) for supplying graphene oxide. This work was supported by the Polish National Centre of Research (NCN), Grant No. N505 485040 through the Silesian University of Technology, Institute of Physics-CND.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Kaźmierczak-Bałata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaźmierczak-Bałata, A., Mazur, J., Bodzenta, J. et al. Investigation of Thermal Properties of SiC Ceramics Containing Carbon Nanostructures by Photothermal Measurements. Int J Thermophys 35, 2328–2340 (2014). https://doi.org/10.1007/s10765-014-1574-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-014-1574-8

Keywords

Navigation