Skip to main content
Log in

Design and Analysis of Spectrally Selective Patterned Thin-Film Cells

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper outlines several techniques for systematic and efficient optimization as well as sensitivity assessment to fabrication tolerances of surface texturing patterns in thin film amorphous silicon (a-Si) solar cells. The aim is to achieve maximum absorption enhancement. The joint optimization of several geometrical parameters of a three-dimensional lattice of periodic square silver nanoparticles, and an absorbing thin layer of a-Si, using constrained optimization tools and numerical FDTD simulations is reported. Global and local optimization methods, such as the Broyden–Fletcher–Goldfarb–Shanno quasi-Newton method and simulated annealing, are employed concurrently for solving the inverse near-field radiation problem. The design of the silver-patterned solar panel is optimized to yield maximum average enhancement in photon absorption over the solar spectrum. The optimization techniques are expedited and improved using a novel nonuniform adaptive spectral sampling technique. Furthermore, the sensitivity of the optimally designed parameters of the solar structure is analyzed by postulating a probabilistic model for the errors introduced in the fabrication process. Monte Carlo simulations and unscented transform techniques are used for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The term irradiance-absorption profile, and the details of the mentioned method shall be formally outlined in the remainder of the paper.

Abbreviations

\(a\) :

Variable in Eq. 7

\(E\) :

Enhancement factor

\(f\) :

Objective function

\(h_{\mathrm{Ag}}\) :

Height of silver nanowires

\(h_{\mathrm{Si}}\) :

Height of amorphous silicon

\(H_n\) :

Hermite polynomial of order \(N\)

\(I\) :

Solar irradiance spectrum

\(S_i\) :

Sigma points for the unscented transform

\(T\) :

Number of satisfied moments in unscented transform

\(w_i\) :

Sigma weights for the unscented transform

\(w_{\mathrm{Ag}}\) :

Width of silver nanowires

\({\varvec{x}}\) :

Selected geometry

\(\Vert {\varvec{x}} \Vert \) :

Norm of vector \({\varvec{x}}\)

\(\alpha _{\mathrm{gr}}\) :

Spectral absorptivity in the presence of grating

\(\alpha _{\mathrm{ngr}}\) :

Spectral absorptivity in the absence of grating

\(\lambda \) :

Wavelength

\(\gamma _i, \lambda _i\) :

Predefined constants

\(\Delta {\varvec{x}}\) :

Change in \({\varvec{x}}\)

\(\varLambda _{\mathrm{Ag}}\) :

Nanowires period

\(\varOmega \) :

Optical wavelength range

References

  1. U.S. Energy Information Administration (EIA) website, Department of Energy, http://www.eia.gov/emeu/aer/pdf/pages/sec1_5.pdf

  2. Renewable 2010 global status report, REN21, Technical Report (2010), http://www.ren21.net/Portals/97/documents/GSR/REN21_GSR_2010_full_revised%20Sept2010.pdf. Accessed Aug 2012

  3. D.M. Schaadt, B. Feng, E.T. Yu, Appl. Phys. Lett. 86, 063106 (2005)

    Article  ADS  Google Scholar 

  4. F.J. Beck, K. Catchpole, Red-shifting the surface plasmon resonance of silver nanoparticles for light trapping in solar cells, Mater. Res. Soc. Symp. Proc. 1101 (2008)

  5. V.E. Ferry, M.A. Verschuuren, H.B.T. Li, E. Verhagen, R.J. Walters, R.E.I. Schropp, H.A. Atwater, A. Polman, Opt. Express 18, A237 (2010)

    Article  ADS  Google Scholar 

  6. F.J. Beck, S. Mokkapati, A. Polman, K.R. Catchpole, Appl. Phys. Lett. 96, 033113 (2010)

    Article  ADS  Google Scholar 

  7. S. Mokkapati, F.J. Beck, A. Polman, K.R. Catchpole, Appl. Phys. Lett. 95, 053115 (2009)

    Article  ADS  Google Scholar 

  8. T.H. Chang, P.H. Wu, S.H. Chen, C.H. Chan, C.C. Lee, C.C. Chen, Y.K. Su, Opt. Express 17, 6519 (2009)

    Article  ADS  Google Scholar 

  9. Y.A. Akimov, W.S. Koh, S.Y. Sian, S. Ren, Appl. Phys. Lett. 96, 073111 (2010)

    Article  ADS  Google Scholar 

  10. R.A. Pala, J. White, E. Barnard, J. Liu, M.L. Brongersma, Adv. Mater. 21, 3504 (2009)

    Article  Google Scholar 

  11. C. Rockstuhl, S. Fahr, F. Lederer, Appl. Phys. 104, 123102 (2008)

    Article  Google Scholar 

  12. J.R. Tumbleston, D.-H. Ko, E.T. Samulski, R. Lopez, Opt. Express 17, 7670 (2009)

    Article  ADS  Google Scholar 

  13. F.J. Beck, A. Polman, K.R. Catchpole, J. Appl. Phys. 105, 114310 (2009)

    Article  ADS  Google Scholar 

  14. W. Wang, S. Wu, K. Reinhardt, Y. Lu, S. Chen, Nano Lett. 10, 2012 (2010)

    Article  ADS  Google Scholar 

  15. J. Munday, H.A. Atwater, Nano Lett. 11, 2195 (2011)

    Article  ADS  Google Scholar 

  16. J. Muller, B. Rech, J. Springer, M. Vanecek, Sol. Energy 77, 917 (2004)

    Google Scholar 

  17. V.E. Ferry, M. Verschuuren, H.T. Li, R.E.I. Schropp, H.A. Atwater, A. Polman, Appl. Phys. Lett. 95, 183503 (2009)

    Article  ADS  Google Scholar 

  18. E. Garnett, P. Yang, Nano Lett. 10, 1082 (2010)

    Article  ADS  Google Scholar 

  19. B.M. Kayes, J.M. Spurgeon, T.C. Sadler, N.S. Lewis, H.A. Atwater, Synthesis and characterization of silicon nanorod arrays for solar cell applications, in IEEE 4th World Conference on Photovoltaic Energy Conversion Proceedings, Waikoloa, Hawaii, vol. 1, 2006, pp. 221–224

  20. M.D. Kelzenberg, S.W. Boettcher, J.A. Petykiewicz, D.B. Turner-Evans, M.C. Putnam, E.L. Warren, J.M. Spurgeon, R.M. Briggs, N.S. Lewis, H.A. Atwater, Nat. Mater. 9, 239 (2010)

    Article  ADS  Google Scholar 

  21. T. Stelzner, M. Pietsch, G. Andra, F. Falk, E. Ose, S. Christiansen, Nanotechnology 19, 295203 (2008)

    Article  Google Scholar 

  22. S. Hajimirza, G. El Hitti, A. Heltzel, J. Howell, Specification of micro-nanoscale radiative patterns using inverse analysis for increasing solar panel efficiency, in Proceedings ASME/JSME 2011 8th Thermal Engineering Joint Conference AJTEC2011-44, Honolulu, Hawaii, 2011. J. Heat Transf. 134, 102702 (2012)

  23. S. Hajimirza, G. El Hitti, A. Heltzel, J. Howell, Using inverse analysis to find optimum nanoscale radiative surface patterns to enhance solar cell performance, in Thermal and Materials Nanoscience and Nanotechnology Conference, Antalya, Turkey, 2011

  24. C.B. Moss, Quasi-Newton methods of optimization (2003) http://ricardo.ifas.ufl.edu. Accessed 2010

  25. W.C. Davidon, SIAM J. Optim. 1, 1 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Fletcher, Practical Methods of Optimization (Wiley, New York, 1987)

    MATH  Google Scholar 

  27. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. V. Cerny, J. Optim. Theory Appl. 45, 41 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  29. L. Ingber, Math. Comput. Model. 12, 967 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  30. I.O. Bohachevsky, M.E. Johnson, M.L. Stein, Technometrics 28, 209 (1986)

    Article  MATH  Google Scholar 

  31. C. Tsallis, D.A. Stariolo, Physica A 233, 395 (1996)

    Article  ADS  Google Scholar 

  32. K. Miettinen, M.M. Mäkelä, H. Maaranen, Comput. Oper. Res. 33, 1102 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. A.R. Hedar, M. Fukushima, Optim. Methods Softw. 17, 891 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  34. P.P. Wang, D.S. Chen, Comput. Optim. Appl. 6, 59 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004)

  36. A.E. Ortega Paredes, L.R.A.X. deMenezes, H. Abdalla Jr., I.N.A. Romani, Modeling and characterization for microstrip filters in the manufacturing process through the unscented transform and use of electromagnetic simulators. Model. Simul. Eng. 2010, Article ID 691241 (2010)

  37. A. Ajayi, Direct Computation of Statistical Variations in Electromagnetic Problems, Ph.D. Thesis, University of Nottingham, UK, 2008

  38. R.E. Greenwood, J.J. Miller, Bull. Am. Math. Soc. 54, 765 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  39. G.H. Golub, J.H. Welsch, Math. Comput. 23, 221 (1969); JSTOR 2004418

Download references

Acknowledgments

The authors appreciate support for this work from the US National Science Foundation under Grant CBET-1032415 and also would like to thank Dr. Alex Heltzel for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shima Hajimirza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hajimirza, S., Howell, J.R. Design and Analysis of Spectrally Selective Patterned Thin-Film Cells. Int J Thermophys 34, 1930–1952 (2013). https://doi.org/10.1007/s10765-013-1495-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1495-y

Keywords

Navigation