Skip to main content
Log in

Sensor for Monitoring the Moisture in Porous Materials

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A new principle of a sensor for monitoring of moisture in porous materials is presented. The sensor utilizes changes of the thermal conductivity of a porous structure when pores are filled with the air/vapor, water, or ice depending on thermodynamic conditions. A hot-ball method is used for measuring the thermal conductivity. The moisture sensor is made of the cylindrical core drilled from the parent material. The signal of the sensor is not sensitive to ionic radicals of the pore medium. The method of sensor calibration is presented, as well. Then the moisture sensor (hot ball) is inserted back into the drilled hole of the material to ensure that the porous structure of both the sensor and the investigated material are identical. Sensors can be made of porous materials in the range of porosities from 0.3 % up to 70 %. A simple device is constructed that allows monitoring of moisture in real conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R.J. Gummerson, C. Hall, W.D. Hoff, R. Hawkes, G.N. Holland, W.S. Moore, Nature 281, 56 (1979)

    Article  ADS  Google Scholar 

  2. L’. Kubičár, V. Vretenár, V. Štofanik, V. Boháč, P. Tiano, in Proceedings of the In situ Monitoring of Monumental Surfaces—SMW08, ed. by P. Tiano (Florence, Italy, 2008), p. 53

  3. S. Roels, J. Carmeliet, H. Hens, O. Adan, H. Brocken, R. Cerny, Z. Pavlik, A.T. Ellis, C. Hall, K. Kumaran, L. Pel, R. Plagge, J. Therm. Envel. Build. Sci. 27, 307 (2004)

    Google Scholar 

  4. M.C. Phillipson, P.H. Baker, M. Davies, Z. Ye, A. McNaughtan, G.H. Galbraith, R.C. McLean, Build. Serv. Eng. Res. Technol. 28, 303 (2007)

    Article  Google Scholar 

  5. R.J. Ball, G.C. Allen, J. Phys. D Appl. Phys. 43, 1 (2010). doi:10.1088/0022-3727/43/10/105503

    Article  Google Scholar 

  6. M.C. Phillipson, P.H. Baker, M. Davies, Z. Ye, G.H. Galbraith, R.C. McLean, Build. Serv. Eng. Res. Technol. 29, 261 (2008)

    Article  Google Scholar 

  7. G.S. Campbell, C. Calissendorff, J.H. Williams, Soil Sci. Soc. Am. J. 55, 291 (1991)

    Article  Google Scholar 

  8. V. Vretenár, L’. Kubičár, V. Boháč, P. Tiano, Int. J. Thermophys. 28, 1522 (2007)

    Google Scholar 

  9. J.C.A. Maxwell, Treatise of Electricity and Magnetism, vol. 1, 3rd edn. (Clarendon Press, Oxford, 1904), p. 440

  10. A.A. Babanov, Sov. Phys. Technol. Phys. 2, 476 (1957)

    Google Scholar 

  11. L’. Kubičár, V. Vretenár, V. Štofanik, V. Boháč, Int. J. Thermophys. 31, 1904 (2010)

    Google Scholar 

  12. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Clarendon Press, Oxford, 1956)

    Google Scholar 

  13. A.G. Ruiz, L’. Kubičár, V. Vretenár, in Proceedings of 17th International Meeting of the Thermophysical Society, ed. by O. Zmeskal (Podkylava, Slovakia, 2012), p. 48, http://www.fch.vutbr.cz/lectures/thermophysics/2012/Proceedings.php

  14. L’. Kubičár, U. Hammerschmidt, D. Fidriková, P. Dieška, V. Vretenár, in Proceedings of 17th International Meeting of the Thermophysical Society, ed. by O. Zmeskal (Podkylava, Slovakia, 2012), p. 166, http://www.fch.vutbr.cz/lectures/thermophysics/2010/pdf/Thermophysics_2010_Proceedings.pdf

  15. V. Vretenár, L’. Kubičár, V. Boháč, in Proceedings of 17th International Meeting of the Thermophysical Society, ed. by O. Zmeskal (Podkylava, Slovakia, 2012), p. 251, http://www.fch.vutbr.cz/lectures/thermophysics/2012/Proceedings.php

  16. U. Hammerschmidt, in Proceedings of the Thirtieth International Thermal Conductivity Conference, and the Eigteenth Thermal Expansion Symposium, ed. by D.S. Gaal, P.S. Gaal (DEStech Publication Inc., Lancaster, PA, 2010), p. 258

  17. L’. Kubičár, V. Vretenár, V. Boháč, P. Tiano, Int. J. Thermophys. 27, 200 (2006)

    Google Scholar 

  18. Thermophysical properties water, air, ice. http://www.engineeringtoolbox.com

  19. O. Koronthalyová, P. Matiašovský, in Proceedings of 11th International Meeting of the Thermophysical Society, ed. by J. Leja (STU, Bratislava, Slovakia, 2007), p. 100, http://www.tpl.fpv.ukf.sk/engl_vers/thermophys/2007/Paper14.pdf

  20. “Effects of the Weathering on Stone Materials: Assessment of their Mechanical Durability (McDUR)”, Project MCDUR G6RD-CT2000-00266, ACOUTHERM GRD3-2001-60001, (European Commission Community Research and Development Information Service (CORDIS), 2005), http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=5057857

  21. “Thermophysical Analysis of Autoclaved Aerated Concrete,” Report Institute of Physics (Bratislava, Slovakia, 2008) [in Slovak]

Download references

Acknowledgments

Authors would like to express thanks to Mr. Markovič for technical assistance. The work was supported by APVV grand agency under contracts LPP 0442-09, APVV 0641-10, and APVV 0330-10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ľ. Kubičár.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fidríková, D., Vretenár, V., Šimková, I. et al. Sensor for Monitoring the Moisture in Porous Materials. Int J Thermophys 34, 1918–1929 (2013). https://doi.org/10.1007/s10765-013-1493-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-013-1493-0

Keywords

Navigation