Skip to main content
Log in

High-sensitivity humidity sensor based on natural hydroxyapatite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, we study the ability of materials based on hydroxyapatite to be developed as a sensing materials toward relative humidity. Natural (NHAp) and synthetic (SHAp) hydroxyapatites are used as sensitive layers on interdigitated copper electrodes. The morphological structure and composition of HAp are characterized by X-ray diffraction analysis (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy EDS. The capacitive and impedance responses of the humidity sensors are analyzed at frequencies ranging from 0.1 kHz to 1 MHz at different humidity values varying from 16 to 87%. Other properties and characteristics of moisture detection are studied for both sensors such as sensitivity, hysteresis, response and recovery times and conduction mechanisms. The results showed that the best performance of all our manufactured sensors is obtained for the NHAp sensor. This sensitivity is around 17900pF/%RH, whereas the response and recovery times are approximately 8 s and 11 s, respectively, the hysteresis value was very low. The obtained results proved that the natural hydroxyapatite is a good candidate and suitable for moisture sensing application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. A. Afify, A. Elsayed, M. Hassan, M. Ataalla, A. Mohamed, A. Hossain, A.S. Abu-Jhadra, J.M. Tulliani, Synthesis and characterization of nano-tungsten oxide precipitated onto natural inorganic clay for humidity-sensing applications. Ceramics 1(1), 120–127 (2018)

    CAS  Google Scholar 

  2. X. Yun, Q. Zhang, B. Luo, H. Jiang, C. Chen, S. Wang, D. Min, Fabricating flexibly resistive humidity sensors with ultrahigh sensitivity using carbonized lignin and sodium alginate. Electroanalysis 32, 1–9 (2020)

    Google Scholar 

  3. G.B. Crochemore, A.R. Pereira Ito, C.A. Goulart, D.P.F. de Souza, Identification of humidity sensing mechanism in MgAl2O4 by impedance spectroscopy as function of relative humidity. Mater. Res. (2018). https://doi.org/10.1590/1980-5373-mr-2017-0729

    Article  Google Scholar 

  4. H. Hamouche, S. Makhlouf, A. Chaouchi, M. Laghrouche, Humidity sensor based on keratin bio polymer film. Sensors Actuators A Phys (2018). https://doi.org/10.1016/j.sna.2018.09.025

    Article  Google Scholar 

  5. V.I. Popov, D.V. Nikolaev, V.B. Timofeev, S.A. Smagulova, I.V. Antonova, Graphene based humidity sensors: the origin of resistance change. Nanotechnology 28, 355501 (2017)

    CAS  Google Scholar 

  6. C. Lv, C. Hu, J. Luo, S. Liu, Y. Qiao, Z. Zhang, J. Song, Y. Shi, J. Cai, A. Watanabe, Recent advances in graphene-based humidity sensors. Nanomaterials. 9(3), 422 (2019)

    CAS  Google Scholar 

  7. X. Le, Y. Liu, L. Peng, J. Pang, Z. Xu, C. Gao, J. Xie, Surface acoustic wave humidity sensors based on uniform and thickness controllable graphene oxide thin films formed by surface tension. Microsyst. Nanoeng. 5, 36 (2019)

    Google Scholar 

  8. N.A. Siddiq, W.Y. Chong, Y.H. Pramono, M.S. Muntini, A. Asnawi, H. Ahmad, All-optical humidity sensor using SnO2 nanoparticle drop coated on straight channel optical waveguide. Photon. Sensors 10, 123–133 (2020)

    CAS  Google Scholar 

  9. S. Wu, G. Wang, Z. Xue, F. Ge, G. Zhang, H. Lu, L. Qiu, Organic field-effect transistors with macroporous semiconductor films as high-performance humidity sensors. ACS Appl. Mater. Interfaces 9(17), 14974–14982 (2017)

    CAS  Google Scholar 

  10. T. Julian, A. Rianjanu, S.N. Hidayat, A. Kusumaatmaja, R. Roto, K. Triyana, Quartz crystal microbalance coated with PEDOT–PSS/PVA nanofiber for a high-performance humidity sensor. J. Sens. Sens. Syst. 8, 243–250 (2019)

    Google Scholar 

  11. C.Y. Lee, G.B. Lee, Humidity sensors: a review. Sens. Lett. 3, 1–14 (2005)

    CAS  Google Scholar 

  12. M.Q. Liu, C. Wang, N.Y. Kim, High-sensitivity and low-hysteresis porous MIM-type capacitive humidity sensor using functional polymer mixed with TiO2 microparticles. Sensors 17, 284 (2017)

    Google Scholar 

  13. D.S. Gomes, A.M.C. Santos, G.A. Neves, R.R. Menezes, A brief review on hydroxyapatite production and use in biomedicine. Cerâmica 65(374), 282–302 (2019)

    CAS  Google Scholar 

  14. S. Basu, B. Basu, Doped biphasic calcium phosphate: synthesis and structure. J. Asian Ceram. Soc. 7(3), 265–283 (2019)

    Google Scholar 

  15. V. Uskoković, D.P. Uskoković, Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J. Biomed. Mater. Res. 96B, 152–191 (2011)

    Google Scholar 

  16. M. Akram, R. Ahmed, I. Shakir, W.A.W. Ibrahim, R. Hussain, Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 49, 1461–1475 (2014)

    CAS  Google Scholar 

  17. A.L. Boskey, Natural and synthetic hydroxyapatites. In: Biomaterials Science: An Introduction to Materials, 3rd edn. Elsevier, Amsterdam (2013)

  18. N.A.S. Mohd Pu’ad, P. Koshy, H.Z. Abdullah, M.I. Idris, T.C. Lee, Syntheses of hydroxyapatite from natural sources. Heliyon 5(5), e01588 (2019)

    CAS  Google Scholar 

  19. M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9(8), 7591–7621 (2013)

    CAS  Google Scholar 

  20. T. Isobe, S. Nakamura, R. Nemoto, M. Senna, H. Sfihi, Solid-state double nuclear magnetic resonance study of the local structure of calcium phosphate nanoparticles synthesized by a wet-mechanochemical reaction. J. Phys. Chem. B 106, 5169–5176 (2002)

    CAS  Google Scholar 

  21. S. Jarudilokkul, W. Tanthapanichakoon, V. Boonamnuayvittaya, Synthesis of hydroxyapatite nanoparticles using an emulsion liquid membrane system. Colloids Surf. A 296, 149–153 (2007)

    CAS  Google Scholar 

  22. I.S. Kim, P.N. Kumta, Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder. Mater. Sci. Eng. B 111, 232–236 (2004)

    Google Scholar 

  23. S. Baco, L. Bambang, N. Joseph, F. Yassin, N.F. Basrin, Structural and composition of natural hydroxyapatite (HA) at different sintering temperatures. Malays. J. Fundam. Appl. Sci. 9(4), 22 (2013)

    Google Scholar 

  24. R.U. Mene, M.P. Mahabole, R.C. Aiyer, R.S. Khairnar, Hydroxyapatite nanoceramic thick film: an efficient CO2 gas sensor. Open Appl. Phys. J. 3, 10–16 (2010)

    CAS  Google Scholar 

  25. M.P. Mahbole, R.C. Aiyer, C.V. Ramakrishna, B. Sreedhar, R.S. Khairnar, Synthesis, characterization and sensing property of hydroxyapatite ceramic. Bull. Mater. Sci. 28(6), 535–545 (2005)

    Google Scholar 

  26. L. Huixia, L. Yong, T. Yanni, L. Lanlan, Z. Qing, L. Kun, T. Hanchun, Room temperature gas sensing properties of tubular hydroxyapatite. New J. Chem. 39(5), 3865–3874 (2015)

    Google Scholar 

  27. R.S. Khairnar, V. Kokol, S.R. Anjum, Development of hydroxyapatite nanoceremics for methanol and ethanol sensor. IJPRET 3(9), 79–86 (2015)

    CAS  Google Scholar 

  28. E.A. Kamoun, M.E. Youssef, M.A. Abu-Saied, A. Fahmy, H.F. Khalil, F. Abdelhai, Ion conducting nanocomposite membranes based on PVA-HA-HAP for fuel cell application: II. Effect of modifier agent of PVA on membrane properties. Int. J. Electrochem. Sci 10, 6627–6644 (2015)

    CAS  Google Scholar 

  29. A. Coulon, A. Grandjean, D. Laurencin, P. Jollivet, S. Rossignol, L. Campayo, Durability testing of an iodate-substituted hydroxyapatite designed for the conditioning of 129I. J. Nucl. Mater. 484, 324–331 (2017)

    CAS  Google Scholar 

  30. O. Ferreiro, F. Yubero, R. Balestra, M. Varella, M. Monteiro, Bovine bone processing for biofilter application. Mater. Sci. Forum 727–728, 727–730 (2012)

    Google Scholar 

  31. W.Y. Xia, Y.S. Feng, F. Jin, L.M. Zhang, Y.J. Du, Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder. Constr. Build. Mater. 156, 199–207 (2017)

    CAS  Google Scholar 

  32. D.T. Le, T.P.T. Le, H.T. Do, H.T. Vo, N.T. Pham, T.T. Nguyen, H.T. Cao, P.T. Nguyen, T.M.T. Dinh, H.V. Le, D.L. Tran, Fabrication of porous hydroxyapatite granules as an effective adsorbent for the removal of aqueous Pb(II) ions. J. Chem. 2019, 1–10 (2019)

    Google Scholar 

  33. F. Fernane, M.O. Mecherri, P. Sharrock, M. Fiallo, R. Sipos, Hydroxyapatite interactions with copper complexes. Mater. Sci. Eng., C 30, 1060–1064 (2010)

    CAS  Google Scholar 

  34. E. Hayek, H. Newseley, Pentacalcium hydroxyorthophosphate. Inorg. Synth. 7, 63 (1963)

    CAS  Google Scholar 

  35. S.B. Lang, S.A.M. Tofail, A.L. Kholkin, M. Wojtas, M. Gregor, A.A. Gandhi, Y. Wang, S. Bauer, M. Krause, A. Plecenik, Ferroelectric polarization in nanocrystalline hydroxyapatite thin films, on silicon. Sci. Rep. 3(1), 2215 (2013)

    CAS  Google Scholar 

  36. N. Saba, M. Jawaid, O.Y. Alothman, M.T. Paridah, A. Hassan, Recent advances in epoxy resin, natural fiber-reinforced epoxy composites and their applications. J. Reinf. Plasticity Compos. 35(6), 447–470 (2015)

    Google Scholar 

  37. P.A.F. Sossa, B.S. Giraldo, B.C.G. Garcia, E.R. Parra, P.J.A. Arango, Comparative study between natural and synthetic hydroxyapatite: structural, morphological and bioactivity properties. Materials 23(4), e12217 (2018)

    Google Scholar 

  38. H.L. Jaber, T.A. Kovács, Preparation and synthesis of hydroxyapatite bio-ceramic from bovine bone by thermal heat treatment. építôanyag. JSBCM (2019). https://doi.org/10.14382/epitoanyag-jsbcm.2019.18

    Article  Google Scholar 

  39. A. Doostmohammadi, A. Monshi, R. Salehi, M.H. Fathi, S. Karbasi, U. Pieles, A.U. Daniels, Preparation, chemistry and physical properties of bone-derived hydroxyapatite particles having a negative zeta potential. Mater. Chem. Phys. 132, 446–452 (2012)

    CAS  Google Scholar 

  40. M.S.M. Arsad, P.M. Lee, L.K. Hung, synthesis and characterization of hydroxyapatite nanoparticles and β-TCP particles. In: 2nd International Conference on Biotechnology and Food Science, vol. 7 (2011)

  41. M.P. Mahabole, M.M. Bahir, R.S. Khairnar, Dielectric and photoluminescence properties as the tools to assess bioactivity of nano-hydroxyapatite biomaterial. Acta Biol. Indica 2(2), 438–443 (2013)

    Google Scholar 

  42. P.V. Dennymol, R. Joseph, Morphological diversity in nanohydroxyapatite synthesized from waste shell: verification and optimization of various synthesis parameters. Int. J. Sci. Technol. 2(6), 179–185 (2014)

    Google Scholar 

  43. R.A. Ramli, R. Adnan, M. AbuBakar, S.M. Masudi, Synthesis and characterisation of pure nanoporous hydroxyapatite. J. Phys. Sci. 22(1), 25–37 (2011)

    CAS  Google Scholar 

  44. C. Garbo, J. Locs, M. D’Este, G. Demazeau, A. Mocanu, C. Roman, O. Horovitz, M. Tomoaia-Cotisel, Advanced Mg, Zn, Sr, Si multi-substituted hydroxyapatites for bone regeneration. Int. J. Nanomed. 15, 1037–1058 (2020)

    CAS  Google Scholar 

  45. H. Madupalli, B. Pavan, M.M.J. Tecklenburg, Carbonate substitution in the mineral component of bone: discriminating the structural changes, simultaneously imposed by carbonate in A and B sites of apatite. J. Solid State Chem. 255, 27–35 (2017)

    CAS  Google Scholar 

  46. A. Michelot, S. Sarda, C. Audin, E. Deydier, E. Manoury, R. Poli, C. Rey, Spectroscopic characterisation of hydroxyapatite and nanocrystalline apatite with grafted aminopropyltriethoxysilane: nature of silane–surface interaction. J. Mater. Sci. 50(17), 5746–5757 (2015)

    CAS  Google Scholar 

  47. S.M. Londoño-Restrepo, R. Jeronimo-Cruz, B.M. Millán-Malo, E.M. Rivera-Muñoz, M.E. Rodriguez-García, Effect of the nano crystal size on the X-ray diffraction patterns of biogenic hydroxyapatite from human, bovine, and porcine bones. Sci. Rep. 9(1), 5915 (2019)

    Google Scholar 

  48. S.N. Danilchenko, O.G. Kukharenko, C. Moseke, I.Y.U. Protsenko, L.F. Sukhodub, B. Sulkio-Cleff, Determination of the bone mineral crystallite size and lattice strain from diffraction line broadening. Cryst. Res. Technol. 37(11), 1234–1240 (2002)

    CAS  Google Scholar 

  49. M.A. Najeeb, Z. Ahmad, R.A. Shakoor, Organic thin-film capacitive and resistive humidity sensors: a focus review. Adv. Mater. Interfaces (2018). https://doi.org/10.1002/admi.201800969S

    Article  Google Scholar 

  50. M.F. Afsar, M.A. Rafiq, A. Jamil, S. Fareed, F. Siddique, A.I.Y. Tok, M.M. Hasan, Development of high-performance bismuth sulfide nanobelts humidity sensor and effect of humid environment on its transport properties. ACS Omega 4(1), 2030–2039 (2019)

    CAS  Google Scholar 

  51. N. Li, Y. Jiang, Y. Xiao, B. Meng, C. Xing, H. Zhang, Z. Peng, A fully Inkjet-printed transparent humidity sensor based on a Ti3C2/Ag Hybrid for touch less sensing of finger motion. Nanoscale 11, 21522 (2019)

    CAS  Google Scholar 

  52. M. Pan, J. Sheng, J. Liu, Z. Shi, L. Jiu, Design and verification of humidity sensors based on magnesium oxide micro-arc oxidation film layers. Sensors 20(6), 1736 (2020)

    CAS  Google Scholar 

  53. Y. Zhao, B. Yang, J. Liu, Effect of interdigital electrode gap on the performance of SnO2-modified MoS2 capacitive humidity sensor. Sensors Actuators B Chem. 271, 256–263 (2018)

    CAS  Google Scholar 

  54. A. Tripathy, S. Pramanik, A. Manna, S. Bhuyan, N. Azrin Shah, Z. Radzi, N. Abu Osman, Design and development for capacitive humidity sensor applications of lead-free Ca, Mg, Fe, Ti-oxides-based electro-ceramics with improved sensing properties via physisorption. Sensors 16(7), 1135 (2016)

    Google Scholar 

  55. W.C. Wang, Y.T. Tian, K. Li, E.Y. Lu, D.S. Gong, X.J. Li, Capacitive humidity-sensing properties of Zn2SiO4 film grown on silicon nanoporous pillar array. Appl. Surf. Sci. 273, 372–376 (2013)

    CAS  Google Scholar 

  56. E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sensors Actuators B 23, 135–156 (1995)

    CAS  Google Scholar 

  57. Z. Ahmad, M.H. Sayyad, M. Saleem, K.S. Karimov, M. Shah, Humidity-dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell. Physica E 41, 18–22 (2008)

    CAS  Google Scholar 

  58. F. Aziz, M. Hassan Sayyad, K. Sulaiman, B.H. Majlis, K.S. Karimov, Z. Ahmad, G. Sugandi, Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol. 23(1), 014001 (2012)

    Google Scholar 

  59. L. Luo, M. Yuan, H. Sun, T. Peng, T. Xie, Q. Chen, J. Chen, Effect of calcination temperature on the humidity sensitivity of TiO2/graphene oxide nanocomposites. Mater. Sci. Semicond. Process. 89, 186–193 (2019)

    CAS  Google Scholar 

  60. F. Tudorache, I. Petrila, K. Popa, A.M. Catargiu, Electrical properties and humidity sensor characteristics of lead hydroxyapatite material. Appl. Surf. Sci. 303, 175–179 (2014)

    CAS  Google Scholar 

  61. D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sensors Actuators B Chem. 225, 233–240 (2015)

    Google Scholar 

  62. C. Lou, K. Hou, W. Zhu, X. Wang, X. Yang, R. Dong, H. Chen, L. Guo, X. Liu, Human respiratory monitoring based on Schottky resistance humidity sensors. Materials 13(2), 430 (2020)

    CAS  Google Scholar 

  63. K. Yamashita, K. Kitagaki, T. Umegaki, Thermal instability and proton conductivity of ceramic hydroxyapatite at high temperatures. J. Am. Ceram. Soc. 78(5), 1191–1197 (1995)

    CAS  Google Scholar 

  64. J.P. Gittiings, C.R. Bowen, A.C.E. Dent, I.G. Turner, F.R. Baxter, J.B. Chaudhuri, Electrical characterization of hydroxyapatite-based bioceramics. Acta Biomater. 5(2), 743–754 (2009)

    Google Scholar 

  65. A. Laghzizil, N. Elherch, A. Bouhaouss, G. Lorente, T. Coradin, J. Livage, Electrecal behavior of hydroxyapatites M10(PO4)6(OH)2 (M=Ca, Pb, Ba). Mater. Res. Bull. 36, 953–962 (2001)

    CAS  Google Scholar 

  66. A. Laghzizil, N. Elherch, A. Bouhaouss, M. Ferhat, Etude par spectroscopie d’impedance complexe des hydroxyapatite. Phys. Chem. News 2, 73–78 (2001)

    Google Scholar 

  67. N. Abdel Aal, M. Bououdina, A. Hajry, A.A. Chaudhry, J.A. Darr, A.A. Al-Ghamdi, E.H. El-Mossalamy, A.A. Al-Ghamdi, Y.K. Sung, F. El-Tantawy, Synthesis, characterization and electrical properties of hydroxyapatite nanoparticles from utilization of biowaste eggshells. Biomater. Res. 15(2), 52–59 (2011)

    Google Scholar 

  68. S. Hontsu, M. Nakamori, H. Nishikawa, M. Kusunoki, Caracteristique of a humidity sensor using a Na-doped hydroxyapatite thin film. Men. Fac. B.O.S.T Kinki Univ. 26, 87–91 (2010)

    CAS  Google Scholar 

  69. K. Yamashita, H. Owada, H. Nakagawa, T. Umegaki, T. Kanazawa, Trivalent-cation-substituted calcium oxyhydroxyapatite. J. Am. Soc. 69, 590–594 (1986)

    CAS  Google Scholar 

  70. H. Eslami, M. Tahriri, F. Moztarzadeh, R. Bader, L. Tayebi, Nanostructured hydroxyapatite for biomedical applications: from powder to bioceramic. J. Korean Ceram. Soc. 55(6), 597–607 (2018)

    CAS  Google Scholar 

  71. S. Kasamatsu, O. Sugino, First-principles investigation of polarization and ion conduction mechanisms in hydroxyapatite. Phys. Chem. Chem. Phys. 20(13), 8744–8752 (2018)

    CAS  Google Scholar 

  72. V. Uskoković, The role of hydroxyl channel in defining selected physicochemical peculiarities exhibited by hydroxyapatite. RSC Adv. 5(46), 36614–36633 (2015)

    Google Scholar 

  73. S.M. Sallam, M.E.S. Hanafi, F.A. Mohamed, M.I.O. Ibrahim, M.M. Rizk, The dielectric study of calcium hydroxyl apatite doped by magnesium ions. Egypt. J. Biophys. Biomed. Eng 19, 1–11 (2018)

    Google Scholar 

  74. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5), 7881–7939 (2014)

    Google Scholar 

  75. P. Li, X. Zheng, Y. Zhang, M. Yuan, B. Jiang, S. Deng, Humidity sensor based on electrospun (Na0.5Bi0.5)0.94TiO3–Ba0.06TiO3 nanofibers. Ceram. Int. 41(10), 14251–21425 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Laghrouche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khtaoui, L., Laghrouche, M., Fernane, F. et al. High-sensitivity humidity sensor based on natural hydroxyapatite. J Mater Sci: Mater Electron 32, 8668–8686 (2021). https://doi.org/10.1007/s10854-021-05538-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05538-w

Navigation