Skip to main content
Log in

Thermal Properties of Ln0.7Ca0.3CoO3 (Ln = La, Pr, and Nd) Perovskites

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In this article, a detailed investigation of the thermal properties of doped perovskite cobaltates Ln0.7Ca0.3CoO3 (Ln = La, Pr, and Nd) at temperatures 0 \({{\rm K} \leq T \leq}\) 350 K using the modified rigid ion model (MRIM) is presented. Theoretically, MRIM provides arguably the most realistic interaction potential to treat these properties. The variation of the specific heat and volumetric thermal expansion coefficient for these cobaltates in the temperature range 0 \({{\rm K} \leq T \leq}\) 350 K is computed. The computed specific heat is in reasonably good agreement with available experimental data. Present investigations reaffirm the presence of strong electron–phonon interactions in these compounds. The dominant contribution to the specific heat is the phonon term that follows here the Debye-type solid. In addition, the results on the temperature dependence of the molecular force constant (f), the reststrahlen frequency (υ), the Debye temperature (θ D), and the Gruneisen parameter (γ 0) are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kobayashi Y., Nakajima T., Asai K.: J. Magn. Magn. Mater. 272, 83 (2004)

    Article  ADS  Google Scholar 

  2. Taguchi H., Shimada M., Koizumi M.: J. Solid State Chem. 41, 329 (1982)

    Article  ADS  Google Scholar 

  3. Zener C.: Phys. Rev. 82, 403 (1960)

    Article  ADS  Google Scholar 

  4. Samoilov A.V., Beach G., Fu C.C., Yeh N.C., Vasquez R.P.: J. Appl. Phys. 83, 6998 (1998)

    Article  ADS  Google Scholar 

  5. Kriener M., Zobel C., Reichl A., Baier J., Cwik M., Berggold K., Kierspel H., Zabara O., Freimuth A., Lorenz T.: Phys. Rev. B 69, 094417 (2004)

    Article  ADS  Google Scholar 

  6. Burely J.C., Mitchell J.F., Short S.: Phys. Rev. B 69, 054401 (2004)

    Article  ADS  Google Scholar 

  7. Baily S.A., Salamon M.B.: J. Appl. Phys. 93, 8316 (2003)

    Article  ADS  Google Scholar 

  8. Kundu A.K., Ramesha K., Seshadri R., Rao C.N.R.: J. Phys. Condens. Matter 16, 7955 (2004)

    Article  ADS  Google Scholar 

  9. Masuda H., Fujita T., Miyashita T., Soda M., Yasui Y., Kobayashi Y., Sato M.: J. Phys. Soc. Jpn. 72, 873 (2003)

    Article  ADS  Google Scholar 

  10. Kundu A.K., Sampathkumaran E.V., Gopalakrishnan K.V., Rao C.N.R.: J. Magn. Magn. Mater. 281, 261 (2004)

    Article  ADS  Google Scholar 

  11. Deac I.G., Vladescu A., Balasz I., Tunyagi A., Tetean R.: Int. J. Mod. Phys. B 24, 762 (2010)

    Article  ADS  Google Scholar 

  12. Kundu A.K., Nordblad P., Rao C.N.R.: J. Solid State Chem. 179, 923 (2006)

    Article  ADS  Google Scholar 

  13. Radaelli P.G., Cheong S.W.: Phys. Rev. B 66, 094408 (2002)

    Article  ADS  Google Scholar 

  14. Brinks H.W., Fjellvag H., Kjekshus A., Hauback B.C.: J. Solid State Chem. 147, 464 (1999)

    Article  ADS  Google Scholar 

  15. Wang Y., Sui Y., Ren P., Wang L., Wang X., Su W., Fan H.J.: Inorg. Chem. 49, 3216 (2010)

    Article  Google Scholar 

  16. Gaur N.K., Choithrani R., Srivastava A.: Solid State Commun. 145, 308 (2008)

    Article  ADS  Google Scholar 

  17. Kaur N., Mohan R., Gaur N.K., Singh R.K.: J. Alloys Compd. 509, 6077 (2011)

    Article  Google Scholar 

  18. Choithrani R., Gaur N.K.: J. Comput. Mater. Sci. 49, S104 (2010)

    Article  Google Scholar 

  19. Slater J.C., Kirkwood J.G.: Phys. Rev. 37, 682 (1931)

    Article  ADS  Google Scholar 

  20. Pauling L.: Nature of the Chemical Bond. Cornell University Press, Ithaca, NY (1945)

    Google Scholar 

  21. Shannon R.D.: Acta Crystallogr. A 32, 751 (1976)

    Article  ADS  Google Scholar 

  22. C. Kittel, Introduction to Solid State Physics, 5th edn. (Wiley, New York, 1976). http://www.webelements.com

  23. Leinenweber K., Wang Y., Yagi T., Yusa H.: Am. Mineral. 79, 197 (1994)

    Google Scholar 

  24. Pendas A.M., Costales A., Blanco M.A., Recio J.M., Luana V.: Phys. Rev. B 62, 13970 (2000)

    Article  ADS  Google Scholar 

  25. Cornelius A.L., Kletz S., Schilling J.S.: Phys. C 197, 209 (1992)

    Article  ADS  Google Scholar 

  26. Zhou J.S., Yan J.Q., Goodenough J.B.: Phys. Rev. B 71, 220103 (2005)

    Article  ADS  Google Scholar 

  27. Farhan M.A., Akhtar M.J.: J. Phys. Condens. Matter 22, 075402 (2010)

    Article  ADS  Google Scholar 

  28. Glasser L.: Inorg. Chem. 34, 4935 (1995)

    Article  Google Scholar 

  29. Hejtmanek J., Santava E., Knizek K., Marysko M., Jirak Z.: Phys. Rev. B 82, 165107 (2010)

    Article  ADS  Google Scholar 

  30. Muta K., Kobayashi Y., Asai K.: J. Phys. Soc. Jpn. 71, 2784 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasna Thakur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaur, N.K., Thakur, R. & Thakur, R.K. Thermal Properties of Ln0.7Ca0.3CoO3 (Ln = La, Pr, and Nd) Perovskites. Int J Thermophys 33, 2311–2322 (2012). https://doi.org/10.1007/s10765-012-1291-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1291-0

Keywords

Navigation