Skip to main content

Advertisement

Log in

Burnett PVT Measurements of Hydrogen and the Development of a Virial Equation of State at Pressures up to 100 MPa

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

PVT properties were measured for hydrogen by the Burnett method in the temperature range from 353 K to 473 K and at pressures up to 100 MPa. In the present Burnett method, the pressure measurement was simplified by using an absolute pressure transducer instead of a differential pressure transducer, which is traditionally used. The experimental procedures become easier, but the absolute pressure transducer is set outside the constant temperature bath because of the difficulty of its use in the bath, and the data acquisition procedure is revised by taking into account the effects of the dead space in the absolute pressure transducer. The measurement uncertainties in temperature, pressure, and density are 20 mK, 28 kPa, and 0.07 % to 0.24 % (k = 2), respectively. Based on the present data and other experimental data at low temperatures, a virial equation of state (EOS) from 220 K to 473 K and up to 100 MPa was developed for hydrogen with uncertainties in density of 0.15 % (k = 2) at P ≤ 15 MPa, 0.20 % at 15 MPa < P ≤ 40 MPa, and 0.24 % at P > 40 MPa, and this EOS shows physically reasonable behavior of the second and third virial coefficients. Isochoric heat capacities were also calculated from the virial EOS and were compared with the latest EOS of hydrogen. The calculated isochoric heat capacities agree well with the latest EOS within 0.5 % above 300 K and up to 100 MPa, while at lower temperatures, as the pressure increases, the deviations become larger (up to 1.5 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakoda N., Shindo K., Shinzato K., Kohno M., Takata Y., Fujii M.: Int. J. Thermophys. 31, 276 (2010)

    Article  ADS  Google Scholar 

  2. Jacobsen R.T, Leachman J.W., Penoncello S.G., Lemmon E.W.: Int. J. Thermophys. 28, 758 (2007)

    Article  ADS  Google Scholar 

  3. Leachman J.W., Jacobsen R.T, Penoncello S.G., Huber M.L.: Int. J. Thermophys. 28, 773 (2007)

    Article  ADS  Google Scholar 

  4. Goodwin R.D., Diller D.E., Roder H.M., Weber L.A.: J. Res. Natl. Bur. Stand. 67, 173 (1963)

    Google Scholar 

  5. L.A. Weber, NASA-SP-3088 (1975)

  6. Michels A., Goudeket M.: Physica 8, 347 (1941)

    Article  ADS  Google Scholar 

  7. Michels A., de Graaff W., Wassenaar T., Levelt J.M.H., Louwerse P.: Physica 25, 25 (1959)

    Article  ADS  Google Scholar 

  8. Leachman J.W., Jacobsen R.T, Penoncello S.G., Lemmon E.W.: J. Phys. Chem. Ref. Data 38, 721 (2009)

    Article  ADS  Google Scholar 

  9. Burnett E.S.: J. Appl. Mech. 3, A136 (1936)

    Google Scholar 

  10. Sakoda N., Shindo K., Motomura M., Shinzato K., Kohno M., Takata Y., Fujii M.: Int. J. Thermophys. 33, 6 (2012)

    Article  ADS  Google Scholar 

  11. Sakoda N., Shindo K., Shinzato K., Kohno M., Takata Y., Fujii M.: Jpn. J. Thermophys. Prop. (Netsu Bussei) 24, 28 (2010)

    Article  Google Scholar 

  12. Eubank P.T., Joffrion L.L., Patel M.R., Warowny W.: J. Chem. Thermodyn. 20, 1009 (1988)

    Article  Google Scholar 

  13. Hwang C.–A., Simon P.P., Hou H., Hall K.R., Holste J.C., Marsh K.N.: J. Chem. Thermodyn. 29, 1455 (1997)

    Article  Google Scholar 

  14. M. Jaeschke, A.E. Humphreys, The GERG Databank of High Accuracy Compressibility Factor Measurements, GERG Technical Monograph 4 (Verlag des Vereins Deutscher Ingenieure, Düsseldorf, Germany, 1990)

  15. Goodwin R.D., Diller D.E., Roder H.M., Weber L.A.: J. Res. Natl. Bur. Stand. 68, 121 (1964)

    Google Scholar 

  16. Zhang H-L., Sato H., Watanabe K.: J. Chem. Eng. Data 41, 1401 (1996)

    Article  Google Scholar 

  17. Wiebe R., Gaddy V.L.: J. Am. Chem. Soc. 60, 2300 (1938)

    Article  Google Scholar 

  18. Presnall D.C.: J. Geophys. Res. 74, 6026 (1969)

    Article  ADS  Google Scholar 

  19. Dymond J.H., Smith E.B.: The Virial Coefficients of Pure Gases and Mixtures: A Critical Compilation. Oxford University Press, New York (1980)

    Google Scholar 

  20. Bartlett E.P.: J. Am. Chem. Soc. 49, 687 (1927)

    Article  Google Scholar 

  21. Bartlett E.P., Cupples H.L., Tremearne T.H.: J. Am. Chem. Soc. 50, 1275 (1928)

    Article  Google Scholar 

  22. Bartlett E.P., Hetherington H.C., Kvalnes H.M., Tremearne T.H.: J. Am. Chem. Soc. 52, 1363 (1930)

    Article  Google Scholar 

  23. H.K. Onnes, C. Braak, Commun. Phys. Lab. Univ. Leiden 100b (1907)

  24. W.J. Haas, Commun. Phys. Lab. Univ. Leiden 127a (1912)

  25. H.K. Onnes, W.J. Haas, Commun. Phys. Lab. Univ. Leiden 127c (1912)

  26. Holborn L.: Ann. Phys. 63, 674 (1920)

    Article  Google Scholar 

  27. F.P.G.A. J. van Agt, H.K. Onnes, Commun. Phys. Lab. Univ. Leiden 176b (1925)

  28. Holborn L., Otto J.: Z. Phys. 33, 1 (1925)

    Article  ADS  Google Scholar 

  29. Holborn L., Otto J.: Z. Phys. 38, 359 (1926)

    Article  ADS  Google Scholar 

  30. Verschoyle T.T.H.: Proc. R. Soc. A111, 552 (1926)

    ADS  Google Scholar 

  31. Gibby C.W., Tanner C.C., Masson I.: Proc. R. Soc. A122, 283 (1928)

    ADS  Google Scholar 

  32. G.P. Nijhoff, W.H. Keesom, Commun. Phys. Lab. Univ. Leiden 188d (1928)

  33. G.P. Nijhoff, W.H. Keesom, Commun. Phys. Lab. Univ. Leiden 188e (1928)

  34. Scott G.A.: Proc. R. Soc. A125, 330 (1929)

    ADS  Google Scholar 

  35. Tanner C.C., Masson I.: Proc. R. Soc. A126, 268 (1930)

    ADS  Google Scholar 

  36. Townend D.T.A., Bhatt L.A.: Proc. R. Soc. A134, 502 (1932)

    ADS  Google Scholar 

  37. Long E.A., Brown O.L.I.: J. Am. Chem. Soc. 59, 1922 (1937)

    Article  Google Scholar 

  38. Cottrell T.L., Hamilton R.A., Taubinger R.P.: Trans. Faraday Soc. 52, 1310 (1956)

    Article  Google Scholar 

  39. Beenakker J.J.M., Varekamp F.H., van Itterbeek A.: Physica 25, 9 (1959)

    Article  ADS  Google Scholar 

  40. Varekamp F.H., Beenakker J.J.M.: Physica 25, 889 (1959)

    Article  ADS  Google Scholar 

  41. Knaap H.F.P., Knoester M., Knobler C.M., Beenakker J.J.M.: Physica 28, 21 (1962)

    Article  ADS  Google Scholar 

  42. El Hadi Z.E.H.A., Dorreppal J.A., Durieux M.: Physica 41, 320 (1969)

    Article  ADS  Google Scholar 

  43. B. Schramm, H. Schmiedel, unpublished data, cited in Ref. 19 (1979), p. 206

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sakoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakoda, N., Shindo, K., Motomura, K. et al. Burnett PVT Measurements of Hydrogen and the Development of a Virial Equation of State at Pressures up to 100 MPa. Int J Thermophys 33, 381–395 (2012). https://doi.org/10.1007/s10765-012-1168-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-012-1168-2

Keywords

Navigation