Skip to main content

Advertisement

Log in

Combined FPPE–PTR Calorimetry Involving TWRC Technique II. Experimental: Application to Thermal Effusivity Measurements of Solids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Photopyroelectric calorimetry in the front detection configuration (FPPE) and photothermal radiometry (PTR) were simultaneously used, together with the thermal-wave resonator cavity method (TWRC), in order to investigate the thermal effusivity of solids inserted as backing layers in a detection cell. A new combined FPPE–PTR–TWRC setup was designed. It was demonstrated experimentally that the PTR technique, combined with the TWRC method, is able to provide calorimetric information about the third layer of a detection cell. Applications on solids with different values of the thermal effusivity (starting from metals, down to thermal isolators) are presented. The values of the thermal effusivity obtained with the PTR technique are similar to those obtained with the PPE technique, and in agreement with literature values; the two methods reciprocally support each other. The accuracy of both methods is higher when the values of the thermal effusivity of the backing layer and coupling fluid are close.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Mandelis, A. Matvienko, in Pyroelectric Materials and Sensors, ed. by D. Remiens (Research Signpost, Trivandrum, Kerala, 2007), pp. 61–81

  2. Delenclos S., Chirtoc M., Hadj Sahraoui A., Kolinsky C., Buisine J.M.: Rev. Sci. Instrum. 73, 2773 (2002)

    Article  ADS  Google Scholar 

  3. Shen J., Mandelis A.: Rev. Sci. Instrum. 66, 4999 (1995)

    Article  ADS  Google Scholar 

  4. Shen J., Mandelis A., Tsai H.: Rev. Sci. Instrum. 69, 197 (1998)

    Article  ADS  Google Scholar 

  5. Pittois S., Chirtoc M., Glorieux C., van den Bril W., Thoen J.: Anal. Sci. (Japan) 17, S110 (2001)

    Google Scholar 

  6. Menon P.C., Rajesh R.N., Glorieux C.: Rev. Sci. Instrum. 80, 054904 (2009)

    Article  ADS  Google Scholar 

  7. Balderas-Lopez L.A., Mandelis A., Garcia J.A.: Rev. Sci. Instrum. 71, 2933 (2000)

    Article  ADS  Google Scholar 

  8. Balderas-Lopez L.A., Mandelis A.: Rev. Sci. Instrum. 74, 700 (2003)

    Article  ADS  Google Scholar 

  9. Streza M., Pop M.N., Kovacs K., Simon V., Longuemart S., Dadarlat D.: Laser Phys. 19, 1340 (2009)

    Article  ADS  Google Scholar 

  10. Dadarlat D., Streza M., Pop M.N., Tosa V., Delenclos S., Longuemart S., Hadj Sahraoui A.: J. Therm. Anal. Calorim. 101, 397 (2010)

    Article  Google Scholar 

  11. Dadarlat D.: Laser Phys. 19, 1330 (2009)

    Article  ADS  Google Scholar 

  12. Dadarlat D., Neamtu C.: Acta. Chim. Slovenica 56, 225 (2009)

    Google Scholar 

  13. Depriester M., Hus P., Delenclos S., Sahraoui A.H.: Rev. Sci. Instrum. 76, 074902 (2005)

    Article  ADS  Google Scholar 

  14. Depriester M., Sahraoui A.H., Hus P., Roussel F.: Appl. Phys. Lett. 94, 231910 (2009)

    Article  ADS  Google Scholar 

  15. Cernuski F., Figari A.: J. Mater. Sci. 35, 5891 (2000)

    Article  Google Scholar 

  16. MacCormack E., Mandelis A., Munidasa M., Farahbakhsh B., Sang H.: Int. J. Thermophys. 18, 221 (1997)

    Article  ADS  Google Scholar 

  17. Gijsbertsen A., Bicanic D., Gielen J.L., Chirtoc M.: Infrared Phys. Technol. 45, 93 (2004)

    Article  ADS  Google Scholar 

  18. Bernini U., Maddalena P., Massera E., Ramaglia A.: Opt. Commun. 168, 305 (1999)

    Article  ADS  Google Scholar 

  19. Dadarlat D., Pop M.N., Streza M., Longuemart S., Depriester M., Hadj Sahraoui A., Simon V.: Int. J. Thermophys. 31, 2275 (2010)

    Article  ADS  Google Scholar 

  20. Mandelis A.: Diffusion-Wave Fields: Mathematical Methods and Green Functions, pp. 148–151. Springer, New York (2006)

    Google Scholar 

  21. Mandelis A.: Principles and Perspectives of Photothermal and Photoacoustic Phenomena. Elsevier, New York, Amsterdam, London, Tokyo (1992)

    Google Scholar 

  22. Touloukian Y.S.: Thermophysical Properties of High Temperatures Solid Materials. MacMillan, New York (1967)

    Google Scholar 

  23. Perry J.H.: Chemical Engineering Handbook. McGraw-Hill, New York (1963)

    Google Scholar 

  24. Dadarlat D., Streza M., Pop N.M., Tosa V.: J. Phys. Conf. Ser. 182, 012023 (2009)

    Article  ADS  Google Scholar 

  25. Sahraoui A.H., Longuemart S., Dadarlat D., Delenclos S., Kolinsky C., Buisine J.M.: Rev. Sci. Instrum. 74, 618 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mircea Nicolae Pop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dadarlat, D., Pop, M.N., Streza, M. et al. Combined FPPE–PTR Calorimetry Involving TWRC Technique II. Experimental: Application to Thermal Effusivity Measurements of Solids. Int J Thermophys 32, 2092–2101 (2011). https://doi.org/10.1007/s10765-011-1067-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-011-1067-y

Keywords

Navigation