Skip to main content
Log in

Two-Temperature Generalized Thermoelastic Interactions in an Infinite Body with a Spherical Cavity

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This paper is concerned with the determination of the thermoelastic displacement, stress, conductive temperature, and thermodynamic temperature in an infinite isotropic elastic body with a spherical cavity in the context of the two-temperature generalized thermoelasticity theory (2TT). The two-temperature Lord-Shulman (2TLS) model and two-temperature Green–Naghdi (2TGN) models of thermoelasticity are combined into a unified formulation introducing the unified parameters. The medium is assumed initially quiescent. The basic equations have been written in the form of a vector-matrix differential equation in the Laplace transform domain which is then solved by (a) the state-space approach and (b) the eigenvalue approach for any set of boundary conditions. The general solution obtained is applied to a specific problem when the boundary of the cavity is subjected to thermomechanical loading. The numerical inversion of the transform is carried out using Fourier-series expansion techniques. The computed results for thermoelastic stresses, conductive temperature, and thermodynamic temperature are shown graphically for the Lord Shulman model and for two models of Green–Naghdi and the effects of two temperatures are discussed. A comparative study of the two methods has also been carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gurtin M.E., Williams W.O.: Z. Angew Math. Phys. 7, 626 (1966)

    Article  Google Scholar 

  2. Gurtin M.E., Williams W.O.: Arch. Ration. Mech. Anal. 26, 83 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen P.J., Gurtin M.E.: Z. Angew. Math. Phys. 19, 614 (1968)

    Article  MATH  Google Scholar 

  4. Chen P.J., Gurtin M.E., Williams W.O.: Z. Angew. Math. Phys. 19, 969 (1968)

    Article  Google Scholar 

  5. Chen P.J., Gurtin M.E., Williams W.O.: Z. Angew. Math. Phys. 20, 107 (1969)

    Article  MATH  Google Scholar 

  6. Warren W.E., Chen P.J.: Acta Mech. 16, 83 (1973)

    Article  Google Scholar 

  7. Lesan D.: J. Appl. Math. Phys. 21, 583 (1970)

    Article  Google Scholar 

  8. Puri P., Jordan P.M.: Int. J. Eng. Sci. 44, 1113 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Quintanilla R.: Acta Mech. 168, 61 (2004)

    Article  MATH  Google Scholar 

  10. Ackerman C.C., Bertman B., Fairbank H.A., Guyer R.A.: Phys. Rev. Lett. 16, 789 (1967)

    Article  ADS  Google Scholar 

  11. Ackerman C.C., Guyer R.A.: Ann. Phys. 50, 128 (1968)

    Article  ADS  Google Scholar 

  12. Ackerman C.C., Overton W.C. Jr.: Phys. Rev. Lett. 22, 764 (1969)

    Article  ADS  Google Scholar 

  13. Von Gutfeld R.J., Nethercot A.H. Jr.: Phys. Rev. Lett. 17, 868 (1966)

    Article  ADS  Google Scholar 

  14. Guyer R.A., Krumhansl J.A.: Phys. Rev. 148, 766 (1966)

    Article  ADS  Google Scholar 

  15. Taylor B., Marris H.J., Elbaum C.: Phys. Rev. Lett. 23, 416 (1969)

    Article  ADS  Google Scholar 

  16. Rogers S.J.: Phys. Rev. B 3, 1440 (1971)

    Article  ADS  Google Scholar 

  17. Jackson H.E., Walker C.T.: Phys. Rev. B 3, 1428 (1971)

    Article  ADS  Google Scholar 

  18. Jackson H.E., Walker C.T., McNelly T.F.: Phys. Rev. Lett. 25, 26 (1970)

    Article  ADS  Google Scholar 

  19. Lord H.W., Shulman Y.: J. Mech. Phys. Solids 15, 299 (1967)

    Article  ADS  MATH  Google Scholar 

  20. Ignaczak J.: J. Therm. Stress. 2, 171 (1979)

    Article  Google Scholar 

  21. Ignaczak J.: J. Therm. Stress. 5, 257 (1982)

    Article  MathSciNet  Google Scholar 

  22. Dhaliwal R.S., Sherief H.: Quart. Appl. Math. 33, 1 (1980)

    Article  MathSciNet  Google Scholar 

  23. Sherief H.: Quart. Appl. Math. 45, 773 (1987)

    MathSciNet  Google Scholar 

  24. Green A.E., Lindsay K.A.: J. Elasticity 2, 1 (1972)

    Article  MATH  Google Scholar 

  25. Green A.E., Naghdi P.M.: Proc. R. Soc. London. Ser. A. 432, 171 (1991)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Green A.E., Naghdi P.M.: J. Elasticity 31, 189 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Green A.E., Naghdi P.M.: J. Therm. Stress. 15, 252 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  28. Roychoudhuri S.K., Dutta P.S.: Int. J. Solids Struct. 42, 4192 (2005)

    Article  MATH  Google Scholar 

  29. Bandyopadhyay N., Roychoudhuri S.K.: Bull. Cal. Math. Soc. 97, 489 (2005)

    MATH  MathSciNet  Google Scholar 

  30. Mallik S.H., Kanoria M.: Indian J. Math. 49, 47 (2007)

    MATH  MathSciNet  Google Scholar 

  31. Mallik S.H., Kanoria M.: J. Therm. Stress. 32, 945 (2009)

    Article  Google Scholar 

  32. Banik S., Mallik S.H., Kanoria M.: Int. J. Appl. Mech. Eng. 14, 113 (2009)

    Google Scholar 

  33. Kar A., Kanoria M.: Int. J. Solids Struct. 44, 2961 (2007)

    Article  MATH  Google Scholar 

  34. Kar A., Kanoria M.: Eur. J. Mech. A/Solids 26, 969 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  35. Youssef H.M.: IMA J. Appl. Math. 71, 1 (2006)

    Article  MathSciNet  Google Scholar 

  36. Youssef H.M., Al-Harby A.H.: Arch. Appl. Mech. 77, 675 (2007)

    Article  ADS  MATH  Google Scholar 

  37. Youssef H.M., Al-Lehaibi E.A.: Int. J. Solids Struct. 44, 1550 (2007)

    Article  MATH  Google Scholar 

  38. Youssef H.M.: J. Comput. Math. Model. 19, 201 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Kumar R., Prasad R., Mukhopadhyay S.: J. Therm. Stress. 33, 161 (2010)

    Article  Google Scholar 

  40. Magan̈e A., Quintanilla R.: J. Math. Mech. Solids. 14, 622 (2009)

    Article  Google Scholar 

  41. L.Y. Bahar, R.B. Hetnarski, in Proceedings of 6th Canadian Congress of Applied Mechanics (University of British Columbia, Vancouver, BC, Canada, 1977), pp. 17–18

  42. L.Y. Bahar, R.B. Hetnarski, in Proceedings of 15th Midwestern Mechanics Conference (University of Illinois, Chicago Circle, 1977b), pp. 161–163

  43. Bahar L.Y., Hetnarski R.B.: J. Therm. Stress. 1, 135 (1978)

    Article  Google Scholar 

  44. Anwar M., Sherief H.: J. Therm. Stress. 11, 353 (1988)

    Article  Google Scholar 

  45. Sherief H., Anwar M.: J. Therm. Stress. 9, 325 (1986)

    Article  Google Scholar 

  46. Sherief H., Hamza F.: J. Therm. Stress. 17, 435 (1994)

    Article  Google Scholar 

  47. El-Maghraby N.M., Youssef H.M.: Appl. Math. Comput. 156, 577 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  48. Honig G., Hirdes U.: J. Comput. Appl. Math. 10, 113 (1984)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kanoria.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banik, S., Kanoria, M. Two-Temperature Generalized Thermoelastic Interactions in an Infinite Body with a Spherical Cavity. Int J Thermophys 32, 1247–1270 (2011). https://doi.org/10.1007/s10765-011-1002-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-011-1002-2

Keywords

Navigation