Skip to main content
Log in

Infinite speed behavior of two-temperature Green–Lindsay thermoelasticity theory under temperature-dependent thermal conductivity

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The present work attempts to analyze the effects of temperature-dependent thermal conductivity on thermoelastic interactions in a medium with a spherical cavity under two-temperature Green–Lindsay thermoelasticity theory. An attempt is made to compare the results with the corresponding results under other three thermoelastic models. The thermal conductivity of the material is assumed to be depending affinely on the conductive temperature. It is assumed that the conductive temperature is prescribed at the stress-free boundary of the spherical cavity. Assuming spherical symmetry motion, the resulting thermoelastic system in one space dimension is solved by using the Kirchhoff transformation, Laplace transform technique and expansion in modified Bessel functions. The paper concludes with numerical results on the solution of the problem for specific parameter choices. Various graphs depict the behavior of the conductive and thermodynamic temperature, the displacement and two nonzero components of stress. A detailed analysis of the results is given by showing the effects of the assumed temperature dependence of the material property. The effect of employing the two-temperature model is discussed in detail. We observe an infinite domain of influence under the two-temperature model as compared to the classical Green–Lindsay model, which we hope will be a useful insight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  2. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  Google Scholar 

  3. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elast. 2, 1–7 (1972)

    Article  Google Scholar 

  4. Green, A.E., Naghdi, P.M.: A re-examination of the base postulates of thermo-mechanics. Proc. R. Soc. Lond. A 432, 171–194 (1991)

    Article  Google Scholar 

  5. Green, A.E., Naghdi, P.M.: On undamped heat waves in an elastic solid. J. Therm. Stresses 15, 253–264 (1992)

    Article  MathSciNet  Google Scholar 

  6. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elast. 31, 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  7. Chandrasekharaiah, D.S.: A uniqueness theorem in the theory of thermoelasticity without energy dissipation. J. Therm. Stresses 19(3), 267–272 (1996)

    Article  MathSciNet  Google Scholar 

  8. Roychoudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30(3), 231–238 (2007)

    Article  Google Scholar 

  9. Ignaczak, J., Ostoja-Starzewski, M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  10. Coleman, B.D.: Thermodynamics of materials with memory. Arch. Ration. Mech. Anal. 17(1), 1–46 (1964)

    Article  MathSciNet  Google Scholar 

  11. Gurtin, M.E., Williams, W.O.: On the classius-Duhem inequality. Z. Angew. Math. Phys. 77, 626–633 (1966)

    Article  Google Scholar 

  12. Chen, P.J., Gurtin, M.E.: On a theory of heat conduction involving twotemperatures. Z. Angew. Math. Phys. 19, 614–627 (1968)

    Article  Google Scholar 

  13. Chen, P.J., Gurtin, M.E., Williams, W.O.: A note on non-simple heatconduction. Z. Angew. Math. Phys. 19, 969–970 (1968)

    Article  Google Scholar 

  14. Chen, P.J., Gurtin, M.E., Williams, W.O.: On the thermodynamics of non-simple elastic materials with two temperatures. Z. Angew. Math. Phys. 20, 107–112 (1969)

    Article  Google Scholar 

  15. Warren, W.E.: Thermoelastic wave propagation from cylindrical and spherical cavities in two temperature theory. J. Appl. Phys. 43(8), 3595–3597 (1972)

    Article  Google Scholar 

  16. Iesan, D.: On thermodynamics of non-simple elastic material with two temperatures. Z. Angew. Math. Phys. 21, 583–591 (1970)

    Article  MathSciNet  Google Scholar 

  17. Warren, W.E., Chen, P.J.: Wave propagation in the two temperaturetheory of thermoelasticity. Acta Mech. 16, 21–33 (1973)

    Article  Google Scholar 

  18. Amos, D.E.: On a half-space solution of a modified heat equation. Q. Appl. Math. 27, 359–369 (1969)

    Article  MathSciNet  Google Scholar 

  19. Chakrabarti, S.: Thermoelastic wave in non-simple media. Pure Appl. Geophys. 109, 1682–1692 (1973)

    Article  Google Scholar 

  20. Puri, P., Jordan, P.M.: On the propagation of harmonic plane wave under the two temperature theory. Int. J Eng. Sci. 44, 1113–1126 (2006)

    Article  MathSciNet  Google Scholar 

  21. Quintanilla, R.: On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mech. 168, 61–73 (2004)

    Article  Google Scholar 

  22. Youssef, H.M.: Theory of two-temperature generalized thermoelasticity. IMA J. Appl. Math. 71, 383–390 (2006)

    Article  MathSciNet  Google Scholar 

  23. Magana, A., Quintanilla, R.: Uniqueness and growth of solution in two temperature generalized thermoelastic theories. Math. Mech. Solids 14(7), 622–634 (2009)

    Article  MathSciNet  Google Scholar 

  24. Youssef, H.M.: Theory of generalized porothermoelasticity. Int. J. Rock Mech. Min. 44(2), 222–227 (2007)

    Article  Google Scholar 

  25. Youssef, H.M., Al-Lehaibi, E.A.: State-space approach of two-temperature generalized thermoelasticity of one-dimensional problem. Int. J. Solids Struct. 44, 1550–1562 (2007)

    Article  Google Scholar 

  26. Kumar, S., Kumar, A., Mukhopadhyay, S.: An investigation on thermoelastic interactions under two-temperature thermoelasticity with two relaxation parameters. Math. Mech. Solids 21(6), 725–736 (2016)

    Article  MathSciNet  Google Scholar 

  27. Kumar, A., Kant, S., Mukhopadhyay, S.: An in-depth investigation on plane harmonic waves under two-temperature thermoelasticity with two relaxation parameters. Math. Mech. Solids 22(2), 191–209 (2017)

    Article  MathSciNet  Google Scholar 

  28. Youssef, H.M., Bassiouny, E.: Two-temperature generalized thermopiezoelasticity for one dimensional problem-state space approach. Comput. Methods Sci. Technol. (CMST) 14, 55–64 (2008)

    Article  Google Scholar 

  29. Abbas, I.A., Youssef, H.M.: Finite element analysis of two-temperature generalized magneto-thermoelasticity. Arch. Appl. Mech. 79, 917–925 (2009)

    Article  Google Scholar 

  30. Ezzat, M.A., El-Karamany, A.S.: State space approach of two-temperature magneto-viscoelasticity theory with thermal relaxation in a medium of perfect conductivity. J. Therm. Stresses 32, 819–838 (2009)

    Article  Google Scholar 

  31. Mukhopadhyay, S., Kumar, R.: Thermoelastic interactions on two-temperature generalized thermoelasticity in an infinite medium with a cylindrical cavity. J. Therm. Stresses 32, 341–360 (2009)

    Article  Google Scholar 

  32. Kumar, R., Mukhopadhyay, S.: Effects of thermal relaxation times on the plane wave propagation under two-temperature thermoelasticity. Int. J. Eng. Sci. 48, 128–139 (2010)

    Article  MathSciNet  Google Scholar 

  33. Banik, S., Kanoria, M.: Effects of three-phase-lag on two-temperature generalized thermoelasticity for infinite medium with spherical cavity. Appl. Math. Mech. 33, 483–498 (2012)

    Article  MathSciNet  Google Scholar 

  34. Mukhopadhyay, S., Prasad, R., Kumar, R.: On the theory of two-temperature thermoelasticity with two phase-lags. J. Therm. Stresses 34, 352–365 (2011)

    Article  Google Scholar 

  35. Noda, N.: Thermal stress in material with temperature-dependent properties. In: Hetnarski, R.B. (ed.) Thermal Stresses, pp. 391–483. Elsevier Science, North Holland, Amsterdam (1986)

    MATH  Google Scholar 

  36. Suhara, T.: Elasticity of steel strained by unequal heating. J. Jpn. Soc. Mech. Eng. 21(50), 25–63 (1918)

    Google Scholar 

  37. Youssef, H.M., Abbas, I.A.: Thermal shock problem of generalized thermoelasticity for an annular cylinder with variable thermal conductivity. Comput. Methods Sci. Technol. 13(2), 95–100 (2007)

    Article  Google Scholar 

  38. Othman, M.I.A.: Lord-Shulman theory under the dependence of the modulus of elasticity on the reference temperature in two-dimensional generalized thermo-elasticity. J. Therm. Stresses 25(11), 1027–1045 (2002)

    Article  Google Scholar 

  39. Othman, M.I.A.: State-space approach to generalized thermoelasticity plane waves with two relaxation times under dependence of the modulus of elasticity on the reference temperature. Can. J. Phys. 81(12), 1403–1418 (2003)

    Article  Google Scholar 

  40. Othman, M.I.A., Elmaklizi, Y.D., Said, S.M.: Generalized thermoelastic medium with temperature-dependent properties for different theories under the effect of gravity field. Int. J. Thermophys. 34(3), 521–537 (2013)

    Article  Google Scholar 

  41. Othman, M.I.A., Hilal, M.I.M.: Rotation and gravitational field effect on two-temperature thermoelastic material with voids and temperature dependent properties type III. J. Mech. Sci. Technol. 29(9), 3739–3746 (2015)

    Article  Google Scholar 

  42. Zenkour, A.M., Abbas, I.A.: A generalized thermoelasticity problem of annular cylinder with temperature-dependent density and material properties. Int. J. Mech. Sci. 84, 54–60 (2014)

    Article  Google Scholar 

  43. Kumar, A., Mukhopadhyay, S.: Investigation on the effects of temperature dependency of material parameters on a thermoelastic loading problem. Z. Angew. Math. Phys. 1 68(4), 98 (2017)

    Article  MathSciNet  Google Scholar 

  44. Stehfest, H.: Numerical inversion of Laplace transform. Commun. ACM 13(1), 47–49 (1970)

    Article  Google Scholar 

  45. Kuhlman, K.L.: Review on inverse Laplace transform algorithm. Numer. Algorithms 63(2), 339–355 (2013)

    Article  MathSciNet  Google Scholar 

  46. Sherief, H.H., Salah, H.A.: A half space problem in the theory of generalized thermoelastic diffusion. Int. J. Solids Struct. 42(15), 4484–4493 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thankfully acknowledge the valuable comments and suggestions of reviewers, which have helped to improve the quality of the paper. One of the authors (Om Namha Shivay) thankfully acknowledges the full financial assistance as SRF fellowship (File. No. 21/06/2015-EU–V) under University Grant Commission (UGC) (Grant No. 433492), India, to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om Namha Shivay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Shivay, O.N. & Mukhopadhyay, S. Infinite speed behavior of two-temperature Green–Lindsay thermoelasticity theory under temperature-dependent thermal conductivity. Z. Angew. Math. Phys. 70, 26 (2019). https://doi.org/10.1007/s00033-018-1064-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-018-1064-0

Keywords

Mathematics Subject Classification

Navigation