Skip to main content
Log in

Combined FPPE–PTR Calorimetry Involving TWRC Technique. Theory and Mathematical Simulations

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Photopyroelectric calorimetry in the front detection configuration (FPPE) was combined with photothermal radiometry (PTR), in order to investigate dynamic thermal parameters of different layers of a detection cell. The layout of the detection cell consists of three layers: directly irradiated pyroelectric sensor, liquid layer, and solid backing material; and the scanning parameter is the thickness of the liquid layer (thermal-wave resonator cavity method). The theory developed for the two techniques indicates that both FPPE and PTR signals can lead, in the thermally thin regime for the sensor and liquid layer, to the direct measurement of the thermal diffusivity or effusivity of the sensor and/or liquid layer, or the thermal effusivity of the backing material. The two methods offer complementary results and/or reciprocally support each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mandelis A., Matvienko A.: Pyroelectric Materials and Sensors, pp. 61–81. D. Remiens, Kerala (2007)

    Google Scholar 

  2. Delenclos S., Chirtoc M., Hadj Sahraoui A., Kolinsky C., Buisine J.M.: Rev. Sci. Instrum. 73, 2773 (2002)

    Article  ADS  Google Scholar 

  3. Shen J., Mandelis A.: Rev. Sci. Instrum. 66, 4999 (1995)

    Article  ADS  Google Scholar 

  4. Shen J., Mandelis A., Tsai H.: Rev. Sci. Instrum. 69, 197 (1998)

    Article  ADS  Google Scholar 

  5. Pittois S., Chirtoc M., Glorieux C., Bril W., Thoen J.: Anal. Sci. (Jpn.) 17, S110 (2001)

    Google Scholar 

  6. Menon P.C., Rajesh R.N., Glorieux C.: Rev. Sci. Instrum. 80, 054904 (2009)

    Article  ADS  Google Scholar 

  7. Balderas-Lopez L.A., Mandelis A., Garcia J.A.: Rev. Sci. Instrum. 71, 2933 (2000)

    Article  ADS  Google Scholar 

  8. Balderas-Lopez L.A., Mandelis A.: Rev. Sci. Instrum. 74, 700 (2003)

    Article  ADS  Google Scholar 

  9. Delenclos S., Dadarlat D., Houriez N., Longuemart S., Kolinsky C., Hadj Sahraoui A.: Rev. Sci. Instrum. 78, 024902 (2007)

    Article  ADS  Google Scholar 

  10. Dadarlat D., Neamtu C., Pop R., Marinelli M., Mercuri F.: J. Optoelectron. Adv. Mater. 9, 2847 (2007)

    Google Scholar 

  11. Streza M., Pop M.N., Kovacs K., Simon V., Longuemart S., Dadarlat D.: Laser Phys. 19, 1340 (2009)

    ADS  Google Scholar 

  12. D. Dadarlat, M. Streza, M.N. Pop, V. Tosa, S. Delenclos, S. Longuemart, A. H. Sahraoui, J. Therm. Anal. Calorim. doi:10.1007/s10973-009-0513-6

  13. Dadarlat D.: Laser Phys. 19, 1330 (2009)

    ADS  Google Scholar 

  14. Dadarlat D., Neamtu C.: Acta Chim. Slovenica 56, 225 (2009)

    Google Scholar 

  15. Depriester M., Hus P., Delenclos S., Sahraoui A.H.: Rev. Sci. Instrum. 76, 074902 (2005)

    Article  ADS  Google Scholar 

  16. Depriester M., Sahraoui A.H., Hus P., Roussel F.: Appl. Phys. Lett. 94, 231910 (2009)

    Article  ADS  Google Scholar 

  17. Cernuski F., Figari A.: J. Mater. Sci. 35, 5891 (2000)

    Article  Google Scholar 

  18. MacCormack E., Mandelis A., Munidasa M., Farahbakhsh B., Sang H.: Int. J. Thermophys. 18, 221 (1997)

    Article  Google Scholar 

  19. Gijsbertsen A., Bicanic D., Gielen J.L., Chirtoc M.: Infrared Phys. Technol. 45, 93 (2004)

    Article  ADS  Google Scholar 

  20. Bernini U., Maddalena P., Massera E., Ramaglia A.: Opt. Commun. 168, 305 (1999)

    Article  ADS  Google Scholar 

  21. Mandelis A., Zver M.M.: J. Appl. Phys. 57, 4421 (1985)

    Article  ADS  Google Scholar 

  22. Chirtoc M., Mihailescu G.: Phys. Rev. B 40, 9606 (1989)

    Article  ADS  Google Scholar 

  23. Santos R., Miranda L.C.M.: J. Appl. Phys. 52, 4194 (1981)

    Article  ADS  Google Scholar 

  24. Mandelis A.: Diffusion-Wave Fields: Mathematical Methods and Green Functions, pp. 148–151. Springer, New York (2006)

    Google Scholar 

  25. Garcia J., Nicolaides L., Park P., Mandelis A.: Anal. Sci. 17, s89 (2001)

    Article  Google Scholar 

  26. Dadarlat D., Streza M., Pop M.N., Tosa V.: J. Phys. Conf. Ser. 182, 012023 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Streza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dadarlat, D., Pop, M.N., Streza, M. et al. Combined FPPE–PTR Calorimetry Involving TWRC Technique. Theory and Mathematical Simulations. Int J Thermophys 31, 2275–2282 (2010). https://doi.org/10.1007/s10765-010-0854-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0854-1

Keywords

Navigation