Skip to main content
Log in

Progress in Noise Thermometry at 505 K and 693 K Using Quantized Voltage Noise Ratio Spectra

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Technical advances and new results in noise thermometry at temperatures near the tin freezing point and the zinc freezing point using a quantized voltage noise source (QVNS) are reported. The temperatures are derived by comparing the power spectral density of QVNS synthesized noise with that of Johnson noise from a known resistance at both 505 K and 693 K. Reference noise is digitally synthesized so that the average power spectra of the QVNS match those of the thermal noise, resulting in ratios of power spectra close to unity in the low-frequency limit. Three-parameter models are used to account for differences in impedance-related time constants in the spectra. Direct comparison of noise temperatures to the International Temperature Scale of 1990 (ITS-90) is achieved in a comparison furnace with standard platinum resistance thermometers. The observed noise temperatures determined by operating the noise thermometer in both absolute and relative modes, and related statistics together with estimated uncertainties are reported. The relative noise thermometry results are combined with results from other thermodynamic determinations at temperatures near the tin freezing point to calculate a value of TT 90 = +4(18) mK for temperatures near the zinc freezing point. These latest results achieve a lower uncertainty than that of our earlier efforts. The present value of TT 90 is compared to other published determinations from noise thermometry and other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benz S.P., Qu J.F., Rogalla H., White D.R., Dresselhaus P.D., Tew W.L., Nam S.W.: IEEE Trans. Instrum. Meas. 58, 884 (2009)

    Article  Google Scholar 

  2. Tew W.L., Labenski J.R., Nam S.W., Benz S.P., Dresselhaus P.D., Burroughs C.J.: Int. J. Thermophys. 28, 629 (2007)

    Article  Google Scholar 

  3. Labenski J.R., Tew W.L., Benz S.P., Nam S.W., Dresselhaus P.: Int. J. Thermophys. 29, 1 (2008)

    Article  Google Scholar 

  4. Benz S.P., Martinis J.M., Dresselhaus P.D., Nam S.W.: IEEE Trans. Instrum. Meas. 52, 545 (2003)

    Article  Google Scholar 

  5. Benz S.P., White D.R., Qu J.F., Rogalla H., Tew W.L.: C.R. Phys. 10, 849 (2009)

    Article  ADS  Google Scholar 

  6. White D.R., Benz S.P., Labenski J.R., Nam S.W., Qu J.F., Rogalla H., Tew W.L.: Metrologia 45, 395 (2008)

    Article  ADS  Google Scholar 

  7. S.P. Benz, J.M. Martinis, S.W. Nam, W.L. Tew, D.R. White, in Proceedings of TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science, ed. by B. Fellmuth, J. Seidel, G. Scholz (VDE Verlag, Berlin, 2002), pp. 37–44

  8. White D.R., Benz S.P.: Metrologia 45, 93 (2008)

    Article  ADS  Google Scholar 

  9. Labenski J.R., Tew W.L., Nam S.W., Benz S.P., Dresselhaus P.D., Burroughs C.J.: IEEE Trans. Instrum. Meas. 56, 481 (2007)

    Article  Google Scholar 

  10. White D.R., Zimmermann E.: Metrologia 37, 11 (2000)

    Article  ADS  Google Scholar 

  11. S.W. Nam, S.P. Benz, J.M. Martinis, P. Dresselhaus, W.L. Tew, D.R. White, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple (AIP, Chicago, 2003), pp. 37–42

  12. B.W Mangum, G.T. Furukawa, Guidelines for Realizing the International Temperature Scale of 1990 (ITS-90) (U.S. Department of Commerce, National Institute of Standards and Technology, Gaithersburg, 1990)

  13. Benz S.P., Hamilton C.A.: Appl. Phys. Lett. 68, 3171 (1996)

    Article  ADS  Google Scholar 

  14. Qu J.F., Benz S.P., Rogalla H., White D.R.: Metrologia 46, 512 (2009)

    Article  ADS  Google Scholar 

  15. Nam S.W., Benz S.P., Dresselhaus P.D., Tew W.L., White D.R., Martinis J.M.: IEEE Trans. Instrum. Meas. 52, 550 (2003)

    Article  Google Scholar 

  16. G.F. Strouse, D.R. Defibaugh, M.R. Moldover, and D.C. Ripple, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple (AIP, Chicago, 2003), pp. 31–36

  17. Mohr P.J., Taylor B.N., Newell D.B.: Rev. Mod. Phys. 80, 633 (2008)

    Article  ADS  Google Scholar 

  18. D.R. Taubert, J. Hartmann, J. Hollandt, J. Fischer, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple (AIP, Chicago, 2003), pp. 7–12

  19. Noulkow N., Taubert R., Meindl P., Hollandt J.: Int. J. Thermophys. 30, 131 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. L. Tew.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tew, W.L., Benz, S.P., Dresselhaus, P.D. et al. Progress in Noise Thermometry at 505 K and 693 K Using Quantized Voltage Noise Ratio Spectra. Int J Thermophys 31, 1719–1738 (2010). https://doi.org/10.1007/s10765-010-0830-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0830-9

Keywords

Navigation