Skip to main content
Log in

Comparing the Method and Hardware for Electrochemical Impedance with the Method of Measuring and Analyzing Electrochemical Noise

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The experimental techniques of the methods of impedance with an ac current and electrochemical noise are considered in detail. The main features, disadvantages, and limitations of the application of both methods are underlined and compared. The theoretical possibility of using a new method of electrochemical noise measurement to study electrochemical objects is shown. This method combines the method of impedance and traditional potentiometric and amperometric methods of electrochemical noise measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertocci, U., Huet, F., Nogueira, R.P., and Rousseau, P., Drift removal procedures in the analysis of electrochemical noise, Corrosion, 2002, vol. 58, p. 337. doi 10.5006/1.3287684

    Article  CAS  Google Scholar 

  2. Astafev, E.A., Ukshe, A.E., Manzhos, R.A., Dobrovolsky, Yu.A., Lakeev, S.G., and Timashev, S.F., Flicker noise spectroscopy in the analysis of electrochemical noise of hydrogen-air PEM fuel cell during its degradation, Int. J. Electrochem. Sci., 2017, vol. 12, p. 1742. doi 10.20964/2017.03.56

    Article  CAS  Google Scholar 

  3. Martinet, S., Durand, R., Ozil, P., Leblanc, P., and Blanchard, P., Application of electrochemical noise analysis to the study of batteries: state-of-charge determination and overcharge detection, J. Power Sources, 1999, vol. 83, p. 93. doi 10.1016/S0378-7753(99)00272-4

    Article  CAS  Google Scholar 

  4. Baert, D.H.J. and Vervaet, A.A.K., Small bandwidth measurement of the noise voltage of batteries, J. Power Sources, 2003, vol. 114, p. 357. doi 10.1016/S0378-7753(02)00599-2

    Article  CAS  Google Scholar 

  5. Astafiev, E.A. and Dobrovolsky, Yu.A., The behavior of membrane-electrode units of polymeric fuel cells: electrochemical methods to study catalytic activity and corrosion resistance of electrodes, Al’ternativnaya Energetika i Ekologiya (in Russian), 2007, no. 12, p. 72.

    Google Scholar 

  6. Astafev, E.A., Lyskov, N.V., and Gerasimova, E.V., Research of polymer electrolyte fuel cell cathodes by electrochemical techniques, Al’ternativnaya Energetika i Ekologiya (in Russian), 2009, no. 8, p. 93.

    Google Scholar 

  7. Astafev, E.A. and Shkerin, S.N., Impedance measuring devices: Price-quality-functionality relationship, Al’ternativnaia Energetika i Ekologiya (in Russian), 2008, no. 2, p. 150.

    Google Scholar 

  8. Ukshe, A.E., Chikin, A.I., Bukun, N.G., and Astafev, E.A., Low-signal electrochemical methods for testing of electrochemical power sources in situ, Al’ternativnaia Energetika i Ekologiya (in Russian), 2010, no. 11, p. 117.

    Google Scholar 

  9. Bertocci, U. and Kruger, J., Studies of passive film breakdown by detection and analysis of electrochemical noise, Surf. Sci., 1980, vol. 101, p. 608. doi 10.1016/0039-6028(80)90653-6

    Article  CAS  Google Scholar 

  10. Cottis, R.A., The significance of electrochemical noise measurements on asymmetric electrodes, Electrochim. Acta, 2007, vol. 52, p. 7585. doi 10.1016/j.electacta. 2006.12.042

    Article  CAS  Google Scholar 

  11. Astafev, E.A., Ukshe, A.E., and Dobrovolskii, Yu.A., Hardware for measurement of electrochemical noise of chemical power sources, Pribory i Tekhnika Eksperimenta (in Russian), 2017, no. 6, p. 130. doi 10.7868/S0032816217050032

    Google Scholar 

  12. Liu, L., Pitting mechanism on an austenite stainless steel nanocrystalline coating investigate by electrochemical noise and in-situ AFM analysis, Electrochim. Acta, 2008, vol. 54, p. 768. doi 10.1016/j.electacta. 2008.06.076

    Article  CAS  Google Scholar 

  13. Astafev, E.A. and Manzhos, R.A., Wide dynamic range hardware for electrochemical noise measurement, Pribory i Tekhnika Eksperimenta (in Russian), 2018, no. 1, p. 149. doi 10.7868/S0032816217060192

    Google Scholar 

  14. Bertocci, U., Applications of a low noise potentiostat in electrochemical measurements, J. Electrochem. Soc., 1980, vol. 127, p. 1931. doi 10.1149/1.2130039

    Article  CAS  Google Scholar 

  15. Huet, F., Nogueira, R.P., Lailler, P., and Torcheux, L., Investigation of the high-frequency resistance of a leadacid battery, J. Power Sources, 2006, vol. 158, p. 1012. doi 10.1016/j.jpowsour.2005.11.026

    Article  CAS  Google Scholar 

  16. Xia, D.-H. and Behnamian, Y., Electrochemical noise: A review of experimental setup, instrumentation and DC removal, Russ. J. Electrochem., 2015, vol. 51, p. 593. doi 10.1134/S1023193515070071

    Article  CAS  Google Scholar 

  17. Bertocci, U., Gabrielli, C., Huet, F., and Keddam, M., Noise resistance applied to corrosion measurements. I. Theoretical analysis, J. Electrochem. Soc., 1997, vol. 144, p. 31. doi 10.1149/1.1837361

    Article  CAS  Google Scholar 

  18. Abaturov, M.A. and Kanevsky, L.S. Anmicroprocessor measuring complex for studying of noise characteristics of chemical power sources, Elrktrohim. Energetika (in Russian), 2008, vol. 8, no. 4. p. 222.

    Google Scholar 

  19. Astafev, E.A., Multi-purpose high resolution device for measurement of electrochemical noise, Pribory i Tekhnika Eksperimenta (in Russian), 2018. doi 10.7868/S0032816218010123

    Google Scholar 

  20. Nyquist, H. Thermal agitation of electric charge in conductors, Phys. Rev., 1928. vol. 32, p. 110. doi 10.1103/PhysRev.32.110

    Book  Google Scholar 

  21. Ritter, S., Huet, F., and Cottis, R.A., Guideline for an assessment of electrochemical noise measurement devices, Mat. Corr., 2012, vol. 63, p. 297. doi 10.1002/maco.201005839

    Article  CAS  Google Scholar 

  22. Scandurra, G., Giusi, G., and Ciofi, C., Multichannel amplifier topologies for high-sensitivity and reduced measurement time in voltage noise measurements, IEEE Trans. Instrum. Meas., 2013, vol. 62, p. 1145. doi 10.1109/TIM.2012.2236719

    Article  Google Scholar 

  23. Blanc, G., Gabrielli, C., and Keddam, M., Measurement of electrochemical noise by a cross correlation method, Electrochim. Acta, 1975, vol. 20, p. 687. doi 10.1016/0013-4686(75)90069-9

    Article  CAS  Google Scholar 

  24. Sampietro, M., Accomando, G., Fasoli, L.G., Ferrari, G., and Gatti, E.C., High sensitivity noise measurement with a correlation spectrum analyzer, IEEE Trans. Instrum. Meas., 2000, vol. 49, p. 820. doi 10.1109/19.863931

    Article  Google Scholar 

  25. Ciofi, C., Crupi, F., and Pace, C., A new method for high-sensitivity noise measurements, IEEE Trans. Instrum. Meas., 2002, vol. 51, no. 4, p. 656. doi 10.1109/TIM.2002.803080

    Article  Google Scholar 

  26. Astafev, E.A., Ukshe, A.E., Gerasimova, E.V., Dobrovolsky, Yu.A., and Manzhos, R.A., Electrochemical noise of a hydrogen-air polymer electrolyte fuel cell operating at different loads, J. Solid State Electrochem., 2018, vol. 22, p. 1839..doi 10.1007/s10008-018-3892-4

    Article  CAS  Google Scholar 

  27. Astafev, E.A., Ukshe, A.E., Leonova, L.S., Manzhos, R.A., and Dobrovolsky, Yu.A., Drift removal and processing features in electrochemical noise analysis, Russ. J. Electrochem., 2018, vol. 54, p. 913 (submitted). doi 10.1134/S0424857018120034

    Google Scholar 

  28. Cheng, Y.F., Luo, J.L., and Wilmott, M., Spectral analysis of electrochemical noise with different transient shapes, Electrochim. Acta, 2000, vol. 45, p. 1763. doi 10.1016/S0013-4686(99)00406-5

    Article  CAS  Google Scholar 

  29. Nigmatullin, R.R., Martemianov, S., Evdokimov, Yu.K., Denisov, E., Thomas, A., and Adiutantov, N., New approach for PEMFC diagnostics based on quantitative description of quasi-periodic oscillations, Int. J. Hydrogen Energy, 2016, vol. 41, p. 12582. doi 10.1016/j.ijhydene.2016.06.011

    Article  CAS  Google Scholar 

  30. Creason, S.C., Hayes, J.W., and Smith, D.E., Fourier transform faradaic admittance measurements III. Comparison of measurement efficiency for various test signal waveforms, J. Electroanal. Chem., 1973, vol. 47, p. 9. doi 10.1016/S0022-0728(73)80343-2

    Article  CAS  Google Scholar 

  31. Popkirov, G.S. and Schindler, R.N., The perturbation signal for fast Fourier transform electrochemical impedance spectroscopy (FFT-EIS), Bulgarian Chem. Commun., 1994, vol. 27, p. 459.

    CAS  Google Scholar 

  32. Smith, D.E., Data-processing in electrochemistry, Anal. Chem., 1976, vol. 48, p. A517. doi 10.1021/ac60370a036

    Book  Google Scholar 

  33. Schwall, R.J., Bond, A.M., Loyd, R.J., Larsen, J.G., and Smith, D.E., High-speed synchronous data generation and sampler system—application to online fast Fourier-transform faradaic admittance measurements, Anal. Chem., 1977, vol. 49, p. 1797. doi 10.1021/ac50020a041

    Article  CAS  Google Scholar 

  34. Denisov, E., Nigmatullin, R., Evdokimov, Yu., and Timergalina, G., Lithium battery transient response as a diagnostic tool, J. Electron. Mater., 2018, vol. 47, p. 4493. doi 10.1007/s11664-018-6346-y

    Article  CAS  Google Scholar 

  35. Lukovtsev, V.P., Rotenberg, Z.A., Dribinskii, A.V., Maksimov, E.M., and Ur’ev, V.N., Estimating depth of discharge of lithium–thionyl chloride batteries from their impedance characteristics, Russ. J. Electrochem., 2005, vol. 41, p. 1097. doi 10.1007/s11175-005-0187-8

    Article  CAS  Google Scholar 

  36. Grafov, B.M., Dobrovol’skii, Yu.A., Davydov, A.D., Ukshe, A.E., Klyuev, A.L., and Astaf’ev, E.A., Electrochemical noise diagnostics: Analysis of algorithm of orthogonal expansions, Russ. J. Electrochem., vol. 51, p. 503. doi 10.1134/S1023193515060063

  37. Grafov, B.M., Dobrovolskii, Yu.A., Klyuev, A.L., Ukshe, A.E., Davydov, A.D., and Astaf’ev, E.A., Median Chebyshev spectroscopy of electrochemical noise, J. Solid State Electrochem., 2017, vol. 21, p. 915. doi 10.1007/s10008-016-3395-0

    Article  CAS  Google Scholar 

  38. Klyuev, A.L., Davydov, A.D., Grafov, B.M., Dobrovolskii, Yu.A., Ukshe, A.E., and Astaf’ev, E.A., Electrochemical noise spectroscopy: Method of secondary Chebyshev spectrum, Russ. J. Electrochem., vol. 52, p. 1001. doi 10.1134/S1023193516100062

  39. Denisov, E., Evdokimov, Yu.K., Martemianov, S., Thomas, A., and Adiutantov, N., Electrochemical noise as a diagnostic tool for PEMFC, Fuel Cells, 2017, vol. 17, p. 225. doi 10.1002/fuce.201600077

    Article  CAS  Google Scholar 

  40. Maizia, R., Dib, A., Thomas, A., and Martemianov, S., Proton exchange membrane fuel cell diagnosis by spectral characterization of the electrochemical noise, J. Power Sources, 2017, vol. 342, p. 553. doi 10.1016/j.jpowsour.2016.12.053

    Article  CAS  Google Scholar 

  41. Denisov, E., Evdokimov, Yu.K., Nigmatullin, R.R., Martemianov, S., Thomas, A., and Adiutantov, N., Spectral method for PEMFC operation mode monitoring based on electrical fluctuation analysis, Sci. Iranica, 2017, vol. 24, p. 1437. doi 10.24200/sci.2017.4125

    Article  Google Scholar 

  42. Timashev, S.F. and Polyakov, Yu.S., Review of Flicker noise spectroscopy in electrochemistry, Fluct. Noise Lett., 2007, vol. 7, p. R15. doi 10.1142/S0219477507003829

    Google Scholar 

  43. Martemianov, S., Adiutantov, N., Evdokimov, Yu.K., Madier, L., Maillard, F., and Thomas, A., New methodology of electrochemical noise analysis and applications for commercial Li-ion batteries, J. Solid State Electrochem., 2015, vol. 19, p. 2803. doi 10.1007/s10008-015-2855-2

    Article  CAS  Google Scholar 

  44. E. A. Astaf’ev, Electrochemical noise measurement of polymer membrane fuel cell under load, Russ. J. Electrochem., 2018, vol. 54, p. 554. doi 10.1134/S1023193518060034

    Google Scholar 

  45. Maizia, R., Dib, A., Thomas, A., and Martemianov, S., Statistical short-time analysis of electrochemical noise generated within a proton exchange membrane fuel cell, J. Solid State Electrochem., 2018, vol. 22, p. 1649. doi 10.1007/s10008-017-3848-0

    Article  CAS  Google Scholar 

  46. Martemianov, S., Maillard, F., Thomas, A., Lagonotte, P., and Madier, L., Noise diagnosis of commercial Li-ion batteries using high-order moments, Russ. J. Electrochem., 2016, vol. 52, p. 1122. doi 10.1134/S1023193516120089

    Article  CAS  Google Scholar 

  47. Al-Mazeedi, H.A.A., and Cottis, R.A., A practical evaluation of electrochemical noise parameters as indicators of corrosion type, Electrochim. Acta, 2004, vol. 49, p. 2787. doi 10.1016/j.electacta.2004.01.040

    Article  CAS  Google Scholar 

  48. Sanchez-Amaya, J.M., Cottis, R.A., and Botana, F.J., Shot noise and statistical parameters for the estimation of corrosion mechanisms, Corros. Sci., 2005, vol. 47, p. 3280. doi 10.1016/j.corsci.2005.05.047

    Article  CAS  Google Scholar 

  49. Kulikovsky, A.A., Scharmann, H., and Wippermann, K., On the origin of voltage oscillations of a polymer electrolyte fuel cell in galvanostatic regime, Electrochem. Commun., 2004, vol. 6, p. 729. doi 10.1016/j.elecom. 2004.05.015

    Article  CAS  Google Scholar 

  50. Hassibi, A., Navid, R., Dutton, R.W., and Lee, T.H., Comprehensive study of noise processes in electrode electrolyte interfaces, J. Appl. Phys., 2004, vol. 96, p. 1074. doi 10.1063/1.1755429

    Article  CAS  Google Scholar 

  51. Kanevskii, L.S., Grafov, B.M., and Astaf’ev, M.G., Dynamics of electrochemical noise of the lithium electrode in aprotic organic electrolytes, Russ. J. Electrochem., 2005, vol. 41, p. 1091. doi 10.1007/s11175-005-0186-9

    Article  CAS  Google Scholar 

  52. Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., Measurement of electrochemical noise of a Li/MnO2 primary lithium battery, J. Solid State Electrochem., 2018, doi 10.1007/s10008-018-4074-0

    Book  Google Scholar 

  53. Kanevskii, L.S., Special features of discharge characteristics of different types of lithium-thionyl chloride cells and the problem of their diagnostics, Russ. J. Electrochem., 2009, vol. 45, p. 835. doi 10.1134/S1023193509080011

    Article  CAS  Google Scholar 

  54. Martem’yanov, S.A. and Grafov, B.M., Electrochemical AC circuits arising in the presence of hydrodynamic velocity fluctuations of the electrolyte, Sov. Electrochem., 1988, vol. 24, p. 94.

    Google Scholar 

  55. Martem’yanov, S.A. and Grafov, B.M., Hydroelectrochemical impedance associated with turbulent fluctuations in the electrolyte solutions, Sov. Electrochem., 1988, vol. 24, p. 344.

    Google Scholar 

  56. Martem’yanov, S.A. and Grafov, B.M., Hydroelectrochemical impedance of an electrode process comprising two adsorption steps, Sov. Electrochem., 1988, vol. 24, p. 1052.

    Google Scholar 

  57. Grafov, B.M., Martemyanov, S.A., and Nekrasov, L.N., Turbulent Diffusion Layer in Electrochemical Systems (in Russian), Moscow: Nauka publ., 1990, 295 p.

    Google Scholar 

  58. Danaee, I., Kinetics and mechanism of palladium electrodeposition on graphite electrode by impedance and noise measurements, J. Electroanal. Chem., 2011, vol. 662, p. 415. doi 10.1016/j.jelechem.2011.09.012

    CAS  Google Scholar 

  59. Danaee, I., Theoretical and experimental studies of layer by layer nucleation and growth of palladium on stainless steel 316L, Chemija, 2013, vol. 24, p. 128.

    CAS  Google Scholar 

  60. Fernández, D., Maurer, P., Martine, M., Coey, J.M.D., and Mobius, M.E., Bubble formation at a gas-evolving microelectrode, Langmuir, 2014, vol. 30, p. 13065. doi 10.1021/la500234r

    Article  CAS  PubMed  Google Scholar 

  61. Huet, F., Musiani, M., and Nogueira, R.P., Electrochemical noise analysis of O2 evolution on PbO2 and PbO2-matrix composites containing Co or Ru oxides, Electrochim. Acta, 2003, vol. 48, p. 3981. doi 10.1016/S0013-4686(03)00524-3

    Article  CAS  Google Scholar 

  62. Tyagai, V.A., Faradaic noise of complex electrochemical reactions, Electrochim. Acta, 1971, vol. 16, p. 1647. doi 10.1016/0013-4686(71)85075-2

    Article  CAS  Google Scholar 

  63. Meszaros, G., Szenes, I., and Lengyel B., Measurement of charge transfer noise, Electrochem. Commun., 2004, vol. 6, p. 1185. doi 10.1016/j.elecom.2004.09.017

    Article  CAS  Google Scholar 

  64. Cottis, R.A., Al-Awadhi, M.A.A., Al-Mazeedi, H., and Turgoose, S., Measures for the detection of localized corrosion with electrochemical noise, Electrochim. Acta, 2001, vol. 46, p. 3665. doi 10.1016/S0013-4686(01)00645-4

    Article  CAS  Google Scholar 

  65. Xiao, H. and Mansfeld, F., Evaluation of coating degradation with electrochemical impedance spectroscopy and electrochemical noise analysis, J. Electrochem. Soc., 1994, vol. 141, p. 2332. doi 10.1149/1.2055121

    Article  CAS  Google Scholar 

  66. Astafev, E.A., Ukshe, A.E., and Dobrovolsky, Yu.A., The model of electrochemical noise of a hydrogen-air fuel cell, J. Electrochem. Soc., 2018, vol. 165, p. F604. doi 10.1149/2.0251809jes

    Google Scholar 

  67. Astafev, E.A., Electrochemical noise measurement of a Li/SOCl2 primary battery, J. Solid State Electrochem., 2018. doi 10.1007/s10008-018-4067-z

    Google Scholar 

  68. Tyagai, V.A. and Luk’yanchikova, N.B., Equilibrium fluctuations in electrochemical processes, Elektrokhimiya (in Russian), 1967, vol. 3, p. 316.

    CAS  Google Scholar 

  69. Tyagai, V.A., Noise in electrochemical systems, Elektrokhimiya (in Russian), 1974, vol. 10, p. 3.

    CAS  Google Scholar 

  70. Schottky, W., On spontaneous current fluctuations in different electricity conductors (in German), Ann. Phys., 1918, vol. 362, p. 541. doi 10.1002/andp.19183622304. 10.1002/andp.19183622304

    Article  Google Scholar 

  71. Bertocci, U. and Huet, F., Noise analysis applied to electrochemical systems, Corrosion, 1995, vol. 51, p. 131. doi 10.5006/1.3293585

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Astafev.

Additional information

Original Russian Text © E.A. Astafev, 2018, published in Elektrokhimiya, 2018, Vol. 54, No. 12, pp. 1044–1054.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafev, E.A. Comparing the Method and Hardware for Electrochemical Impedance with the Method of Measuring and Analyzing Electrochemical Noise. Russ J Electrochem 54, 1022–1030 (2018). https://doi.org/10.1134/S1023193518130049

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518130049

Keywords

Navigation