Skip to main content
Log in

Comparison of Thermal Conductivity and Thermal Boundary Conductance Sensitivities in Continuous-Wave and Ultrashort-Pulsed Thermoreflectance Analyses

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Thermoreflectance techniques are powerful tools for measuring thermophysical properties of thin film systems, such as thermal conductivity, Λ, of individual layers, or thermal boundary conductance across thin film interfaces (G). Thermoreflectance pump–probe experiments monitor the thermoreflectance change on the surface of a sample, which is related to the thermal properties in the sample of interest. Thermoreflectance setups have been designed with both continuous wave (cw) and pulsed laser systems. In cw systems, the phase of the heating event is monitored, and its response to the heating modulation frequency is related to the thermophysical properties; this technique is commonly termed a phase sensitive thermoreflectance (PSTR) technique. In pulsed laser systems, pump and probe pulses are temporally delayed relative to each other, and the decay in the thermoreflectance signal in response to the heating event is related to the thermophysical properties; this technique is commonly termed a transient thermoreflectance (TTR) technique. In this work, mathematical models are presented to be used with PSTR and TTR techniques to determine the Λ and G of thin films on substrate structures. The sensitivities of the models to various thermal and sample parameters are discussed, and the advantages and disadvantages of each technique are elucidated from the results of the model analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cahill D.G., Ford W.K., Goodson K.E., Mahan G.D., Majumdar A., Maris H.J., Merlin R., Phillpot S.R.: J. Appl. Phys. 93, 793 (2003)

    Article  ADS  Google Scholar 

  2. Cahill D.G., Goodson K.E., Majumdar A.: J. Heat Transf. 124, 223 (2002)

    Article  Google Scholar 

  3. Cahill D.G.: Microscale Thermophys. Eng. 1, 85 (1997)

    Article  Google Scholar 

  4. Tai Y.C., Mastrangelo C.H., Muller R.S.: J. Appl. Phys. 63, 1442 (1988)

    Article  ADS  Google Scholar 

  5. Tai Y.C., Mastrangelo C.H., Muller R.S.: J. Appl. Phys. 66, 3420 (1989)

    Article  ADS  Google Scholar 

  6. Cahill D.G.: Rev. Sci. Instrum. 61, 802 (1990)

    Article  ADS  Google Scholar 

  7. Cahill D.G.: Rev. Sci. Instrum. 73, 10 (2002)

    Article  ADS  Google Scholar 

  8. Hopkins P.E., Phinney L.M.: J. Heat Transf. 131, 043201 (2009)

    Article  Google Scholar 

  9. Shi L., Li D., Yu C., Jang W., Kim D., Yao Z., Kim P., Majumdar A.: J. Heat Transf. 125, 881 (2003)

    Article  Google Scholar 

  10. Kim P., Shi L., Majumdar A., McEuen P.L.: Phys. Rev. Lett. 87, 215502 (2001)

    Article  ADS  Google Scholar 

  11. Koh Y.K., Singer S.L., Kim W., Zide J.M.O., Lu H., Cahill D.G, Majumdar A., Gossard A.C.: J. Appl. Phys. 105, 054303 (2009)

    Article  ADS  Google Scholar 

  12. Tong T., Zhao Y., Delzeit L., Kashani A., Meyyappan M., Majumdar A.: IEEE Trans. Compon. Packag. Technol. 30, 92 (2007)

    Article  Google Scholar 

  13. Ohsone Y., Wu G., Dryden J., Zok F., Majumdar A.: J. Heat Transf. 121, 954 (1999)

    Article  Google Scholar 

  14. Li B., Pottier L., Roger J.P., Fournier D.: Thin Solid Films 352, 91 (1999)

    Article  ADS  Google Scholar 

  15. Li B., Roger J.P., Pottier L., Fournier D.: J. Appl. Phys. 86, 5314 (1999)

    Article  ADS  Google Scholar 

  16. Pottier L.: Appl. Phys. Lett. 64, 1618 (1994)

    Article  ADS  Google Scholar 

  17. Chiritescu C., Cahill D.G., Nguyen N., Johnson D., Bodapati A., Keblinski P., Zschack P.: Science 315, 351 (2007)

    Article  ADS  Google Scholar 

  18. Costescu R.M., Cahill D.G., Fabreguette F.H., Sechrist Z.A., George S.M.: Science 303, 989 (2004)

    Article  ADS  Google Scholar 

  19. Hopkins P.E., Norris P.M., Stevens R.J., Beechem T., Graham S.: J. Heat Transf. 130, 062402 (2008)

    Article  Google Scholar 

  20. Hopkins P.E., Salaway R.N., Stevens R.J., Norris P.M.: Int. J. Thermophys. 28, 947 (2007)

    Article  Google Scholar 

  21. Hopkins P.E., Stevens R.J., Norris P.M.: J. Heat Transf. 130, 022401 (2008)

    Article  Google Scholar 

  22. Stoner R.J., Maris H.J.: Phys. Rev. B 48, 16373 (1993)

    Article  ADS  Google Scholar 

  23. Schmidt A.J., Chen X., Chen G.: Rev. Sci. Instrum. 79, 114902 (2008)

    Article  ADS  Google Scholar 

  24. H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Oxford University Press, New York, 1959), p. 109

  25. Feldman A.: High Temp. High Press. 31, 293 (1999)

    Article  Google Scholar 

  26. Cahill D.G.: Rev. Sci. Instrum. 75, 5119 (2004)

    Article  ADS  Google Scholar 

  27. Incropera F., DeWitt D.P.: Fundamentals of Heat and Mass Transfer, 4th edn. Wiley, New York (1996)

    Google Scholar 

  28. Costescu R.M., Wall M.A., Cahill D.G.: Phys. Rev. B 67, 054302 (2003)

    Article  ADS  Google Scholar 

  29. Lee S.-M., Cahill D.G.: J. Appl. Phys. 81, 2590 (1997)

    Article  ADS  Google Scholar 

  30. Stevens R.J., Smith A.N., Norris P.M.: J. Heat Transf. 127, 315 (2005)

    Article  Google Scholar 

  31. Gray D.E.: American Institute of Physics Handbook, 3rd edn. McGraw Hill, New York (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick E. Hopkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hopkins, P.E., Serrano, J.R. & Phinney, L.M. Comparison of Thermal Conductivity and Thermal Boundary Conductance Sensitivities in Continuous-Wave and Ultrashort-Pulsed Thermoreflectance Analyses. Int J Thermophys 31, 2380–2393 (2010). https://doi.org/10.1007/s10765-010-0808-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0808-7

Keywords

Navigation