Skip to main content

Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids

Abstract

In this study, the thermal conductivity and viscosity of TiO2 nanoparticles in deionized water were investigated up to a volume fraction of 3% of particles. The nanofluid was prepared by dispersing TiO2 nanoparticles in deionized water by using ultrasonic equipment. The mean diameter of TiO2 nanoparticles was 21 nm. While the thermal conductivity of nanofluids has been measured in general using conventional techniques such as the transient hot-wire method, this work presents the application of the 3ω method for measuring the thermal conductivity. The 3ω method was validated by measuring the thermal conductivity of pure fluids (water, methanol, ethanol, and ethylene glycol), yielding accurate values within 2%. Following this validation, the effective thermal conductivity of TiO2 nanoparticles in deionized water was measured at temperatures of 13 °C, 23 °C, 40 °C, and 55 °C. The experimental results showed that the thermal conductivity increases with an increase of particle volume fraction, and the enhancement was observed to be 7.4% over the base fluid for a nanofluid with 3% volume fraction of TiO2 nanoparticles at 13 °C. The increase in viscosity with the increase of particle volume fraction was much more than predicted by the Einstein model. From this research, it seems that the increase in the nanofluid viscosity is larger than the enhancement in the thermal conductivity.

This is a preview of subscription content, access via your institution.

References

  1. S.U.S. Choi, Developments and Applications of Non-Newtonian Flows, FED-231/MD-66 (ASME, New York, 1995), p. 99

  2. Yu W.H., France D.M., Routbort J.L, Choi S.U.S.: Heat Transfer Eng. 29, 432 (2008)

    Article  ADS  Google Scholar 

  3. Murshed S.M.S., Leong K.C., Yang C.: Appl. Therm. Eng. 28, 2109 (2008)

    Article  Google Scholar 

  4. Maxwell J.C.: A Treatise on Electricity and Magnetism, 2nd edn, pp. 435. Clarendon Press, Oxford, UK (1881)

    Google Scholar 

  5. Hamilton R.L., Crosser O.K.: Ind. Eng. Chem. Fundam. 1, 187 (1962)

    Article  Google Scholar 

  6. Masuda H., Ebata A., Teramae K., Hishinuma N.: Netsu Bussei (Japan) 7, 227 (1993)

    Google Scholar 

  7. Das S.K., Putra N., Thiesen P., Roetzel W.: ASME J. Heat Transfer 125, 567 (2003)

    Article  Google Scholar 

  8. Patel H.E., Das S.K., Sundararajan T., Nair A.S., George B., Pradeep T.: Appl. Phys. Lett. 83, 2931 (2003)

    Article  ADS  Google Scholar 

  9. Wen D., Ding Y.: J. Thermophys. Heat Transfer 18, 481 (2004)

    Article  Google Scholar 

  10. Chon C.H., Kihm K.D.: ASME J. Heat Transfer 127, 810 (2005)

    Article  Google Scholar 

  11. Li C.H., Peterson G.P.: J. Appl. Phys. 99, 084314 (2006)

    Article  ADS  Google Scholar 

  12. Wang Z.L., Tang D.W., Liu S., Zheng X.H., Araki N.: Int. J. Thermophys. 28, 1255 (2007)

    Article  Google Scholar 

  13. Murshed S.M.S., Leong K.C., Yang C.: Int. J. Therm. Sci. 47, 560 (2008)

    Article  Google Scholar 

  14. Mintsa H.A., Roy G., Nguyen C.T., Doucet D.: Int. J.Therm. Sci. 48, 363 (2008)

    Article  Google Scholar 

  15. Venerus D.C., Kabadi M.S., Lee S., Perez-Luna V.: J. Appl. Phys. 100, 094310 (2006)

    Article  ADS  Google Scholar 

  16. Zhang X., Gu H., Fujii M.: Int. J. Thermophys. 27, 569 (2006)

    Article  Google Scholar 

  17. Yang B., Han Z.H.: Appl. Phys. Lett. 89, 083111 (2006)

    Article  ADS  Google Scholar 

  18. Timofeeva E.V., Gavrilov A.N., McCloskey J.M., Tolmachev Y.V., Sprunt S., Lopatina L.M., Selinger J.V.: Phys. Rev. E 76, 061203 (2007)

    Article  ADS  Google Scholar 

  19. Prasher R., Song D., Wang J.: Appl. Phys. Lett. 89, 133108 (2006)

    Article  ADS  Google Scholar 

  20. Namburu P.K., Kulkarni D.P., Misra D., Das D.K.: Exp. Therm. Fluid Sci. 32, 397 (2007)

    Article  Google Scholar 

  21. Lee J.H., Hwang K.S., Jang S.P., Lee B.H., Kim J.H., Choi S.U.S., Choi C.J.: Int. J. Heat Mass Transfer 51, 2651 (2008)

    Article  Google Scholar 

  22. Murshed S.M.S., Leong K.C., Yang C.: Int. J. Therm. Sci. 47, 560 (2008)

    Article  Google Scholar 

  23. Einstein A.: Investigations on the Theory of the Brownian Movement. Dover, New York (1956)

    MATH  Google Scholar 

  24. Nielsen L.E.: J. Appl. Phys. 41, 4626 (1970)

    Article  ADS  Google Scholar 

  25. Turgut A., Sauter C., Chirtoc M., Henry J.F., Tavman S., Tavman I.: J. Pelzl, Eur. Phys. J. Special Topics 153, 349 (2008)

    Article  ADS  Google Scholar 

  26. M. Chirtoc, J.F. Henry, A. Turgut, C. Sauter, S. Tavman, I. Tavman, J. Pelzl, in Proceedings 5th European Thermal-Sciences Conference, ed. by G.G.M. Stoffels, T.H. van der Meer, A.A. van Steenhoven, Eindhoven (2008), ISBN 978-90-386-1274-4, MNH-12

  27. Chirtoc M., Henry J.F.: Eur. Phys. J. Special Topics 153, 343 (2008)

    Article  ADS  Google Scholar 

  28. Carslaw H.W., Jaeger J.C.: Conduction of Heat in Solids, 2nd edn. Oxford Univ. Press, London, UK (1959)

    Google Scholar 

  29. Cahill D.G.: Rev. Sci. Instrum. 61, 802 (1990)

    Article  ADS  Google Scholar 

  30. Chirtoc M., Filip X., Henry J.F, Antoniow J.S., Chirtoc I., Dietzel D., Meckenstock R., Pelzl J.: Superlattices Microstruct. 35, 305 (2004)

    Article  ADS  Google Scholar 

  31. Viswanath D.S., Ghosh T.K., Prasad D.H.L., Dutt N.V.K., Rani K.Y.: Viscosity of Liquids. Springer, New York (2007)

    MATH  Google Scholar 

  32. Yoo D.H., Hong K.S., Yang H.S.: Thermochim. Acta 455, 66 (2007)

    Article  Google Scholar 

  33. He Y., Jin Y., Chen H., Ding Y., Cang D., Lu H.: Int. J. Heat Mass Transfer 50, 2272 (2007)

    Article  MATH  Google Scholar 

  34. Pak B.C., Cho Y.I.: Exp. Heat Transfer 11, 151 (1998)

    Article  ADS  Google Scholar 

  35. Murshed S.M.S., Leong K.C., Yang C.: Int. J. Therm. Sci. 44, 367 (2005)

    Article  Google Scholar 

  36. Wen D., Ding Y.: IEEE T. Nanotechnol. 5, 220 (2006)

    Article  ADS  Google Scholar 

  37. Bruggeman D.A.G: Ann. Phys., Leipzig 24, 636 (1935)

    Article  ADS  Google Scholar 

  38. Xie H., Fujii M., Zhang X.: Int. J. Heat Mass Transfer 48, 2926 (2005)

    Article  Google Scholar 

  39. Lide D.R.: CRC Handbook of Chemistry and Physics, 84th edn. CRC Press, Boca Raton, FL (2003)

    Google Scholar 

  40. Krieger I.M., Dougherty T.J.: Trans. Soc. Rheol. 3, 137 (1959)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Tavman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Turgut, A., Tavman, I., Chirtoc, M. et al. Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids. Int J Thermophys 30, 1213–1226 (2009). https://doi.org/10.1007/s10765-009-0594-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0594-2

Keywords

  • 3ω method
  • Nanofluid
  • Nanoparticle
  • Thermal conductivity
  • Titanium dioxide
  • Viscosity