Skip to main content
Log in

Molecular Dynamics Study on the Anisotropic Thermal Conductivity of Helium–Xenon Binary Nanocrystal Superlattices

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The anisotropic thermal conductivity of helium–xenon binary nanocrystal superlattices (BNSLs), which are stoichiometric solid structures Xe(He)2 and Xe(He)13, at high pressure and room temperature (T = 300 K), respectively, has been calculated by equilibrium molecular dynamics (EMD) simulation using the Green–Kubo formalism and the exponential-6 intermolecular potential under periodic boundary conditions (PBC). The pressures obtained from EMD agree very well with those from an independent study, to within 5 %. Nonequilibrium molecular dynamics (NEMD) simulation is also carried out for comparison. The thermal conductivities predicted by NEMD are of the same order of magnitude as the results predicted by EMD. The anisotropic thermal conductivities of stoichiometric solid structures (Xe(He)2 and Xe(He)13) with different molar volume and atomic number are investigated, and results show that the thermal conductivities of Xe(He)2 are more strongly anisotropic than those of Xe(He)13, whereas the averaged thermal conductivities of Xe(He)2 are around one tenth (1/10) of those of Xe(He)13, indicating that the thermal conductivities of helium–xenon BNSLs (Xe(He)2 and Xe(He)13) significantly depend on the molecular structure in both magnitude and anisotropy. The results also show that both the magnitude and anisotropy of the thermal conductivity of helium–xenon BNSLs (Xe(He)2 and Xe(He)13) slightly depend on the atomic number and molar volume of the simulation system, with finite-size effects existing in the nanoscale system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanders J.V.: Philos. Mag. A 42, 705 (1980)

    Article  ADS  Google Scholar 

  2. Murray M.J., Sanders J.V.: Philos. Mag. A 42, 721 (1980)

    Article  ADS  Google Scholar 

  3. Shevchenko E.V., Talapin D.V., Rogach A.L., Kornowski A., Haase M., Weller H.: J. Am. Chem. Soc. 124, 11480 (2002)

    Article  Google Scholar 

  4. Redl F.X., Cho K.-S., Murray C.B., O’Brien S.: Nature 423, 968 (2003)

    Article  ADS  Google Scholar 

  5. Shevchenko E.V., Talapin D.V., Murray C.B., O’Brien S.: J. Am. Chem. Soc. 128, 3620 (2006)

    Article  Google Scholar 

  6. T.D. Ewers, A.K. Sra, Q. Xu, H. Zandbergenb, R.E. Schaak, Chem. Commun. (2006). doi:10.1039/b515673d

  7. Evans D.J., Morriss G.P.: Comput. Phys. Rep. 1, 297 (1984)

    Article  ADS  Google Scholar 

  8. Barrat J.-L., Vos W.L.: J. Chem. Phys. 8, 5707 (1997)

    Google Scholar 

  9. A.N. Bodapati, Structural Disorder and Thermal Transport in Nanoscale Solids, Dissertation, Rensselaer Polytechnic Institute, 2006, available via DIALOG, http://proquest.calis.edu.cn, cited 15 Dec 2008

  10. Volz S.G., Chen G.: Phys. Rev. B 61, 2651 (2000)

    Article  ADS  Google Scholar 

  11. M.P. Allen, Introduction to Molecular Dynamics Simulation (University of Warwick, UK, 2004), available via DIALOG, http://www.fz-juelich.de/nic-series/volume23/allen.pdf, cited 15 Dec 2008

  12. Schelling P.K., Phillpot S.R., Keblinski P.: Phys. Rev. B 65, 144306 (2002)

    Article  ADS  Google Scholar 

  13. T. Sirk, Numerical Simulation of Nanoscale Flow: A Molecular Dynamics Study of Drag, Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, 2006, available via DIALOG, http://scholar.lib.vt.edu/theses/available/etd-05042006-190812/unrestricted/SIRK.pdf, cited 15 Dec 2008

  14. Schofield A.B., Pusey P.N., Radcliffe P.: Phys. Rev. E 72, 031407 (2005)

    Article  ADS  Google Scholar 

  15. N. Ogbonna, Molecular Dynamics Simulation, Post-graduate Diploma Essay, African Institute for Mathematical Sciences, South Africa, 2004, available via DIALOG, http://users.aims.ac.za/~nneoma/theses/NneomaAimsEssay.pdf, cited 15 Dec 2008

  16. Choi S.-H., Maruyama S.: Int. J. Therm. Sci. 44, 547 (2005)

    Article  Google Scholar 

  17. McGaughey A.J.H., Kaviany M.: Phys. Rev. B 69, 094303 (2004)

    Article  ADS  Google Scholar 

  18. Ladd A., Moran B., Hoover W.G.: Phys. Rev. B 34, 5058 (1986)

    Article  ADS  Google Scholar 

  19. W.C.W. Fon, Thermal Properties of Nano- and Microstructures, Dissertation, California Institute of Technology, Pasadena, CA, 2004, available via DIALOG, http://etd.caltech.edu/etd/available/etd-05262004-123035/unrestricted/Thesis.pdf, cited 15 Dec 2008

  20. Chen Y., Lukes J.R., Yang J., Wu Y.: J. Chem. Phys. 120, 3841 (2004)

    Article  ADS  Google Scholar 

  21. Y. Hudiono, Thermal Transport Properties of Nanoporous Zeolite Thin Films, Dissertation, Georgia Institute of Technology, Atlanta, GA, 2008, available via DIALOG, http://etd.gatech.edu/theses/available/etd-07032008-122258/unrestricted/Hudiono_yeny_200808_phd.pdf, cited 15 Dec 2008

  22. J.D. Chung, A.J.H. McGaughey, M. Kaviany, ASME J. Heat Transfer (2004). doi:10.1115/1.1723469

  23. I. Soroka, Magnetic Heterostructures: The Effect of Compositional Modulation on Magnetic Properties, Dissertation, Uppsala University, Sweden, 2005, available via DIALOG, http://www.diva-portal.org/diva/getDocument?urn_nbn_se_uu_diva-5733-2__fulltext.pdf, cited 15 Dec 2008

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, D. Molecular Dynamics Study on the Anisotropic Thermal Conductivity of Helium–Xenon Binary Nanocrystal Superlattices. Int J Thermophys 30, 919–933 (2009). https://doi.org/10.1007/s10765-009-0577-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-009-0577-3

Keywords

Navigation