Skip to main content

Advertisement

Log in

Viscosity of Imidazolium-Based Ionic Liquids at Elevated Pressures: Cation and Anion Effects

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The viscosity of imidazolium-based ionic liquids with four different cations and three different anions was measured to pressures of 126 MPa and at three temperatures (298.15 K, 323.15 K, and 343.15 K). The high-pressure viscosity of 1-ethyl-3-methylimidazolium ([EMIm]), 1-n-hexyl-3-methylimidazolium ([HMIm]), and 1-n-decyl-3-methylimidazolium ([DMIm]) cations with a common anion, bis(trifluoromethylsulfonyl)imide ([Tf2N]), was measured to determine the alkyl-chain length effect of the cation. An increase in the alkyl-chain length increased the viscosity at elevated pressures. [DMIm] exhibited a larger nonlinear increase with pressure over the shorter alkyl substituents. Anion effects were investigated with [HMIm] as a common cation and anions of [Tf2N], hexafluorophosphate ([PF6]), and tetrafluoroborate ([BF4]). [HMIm][PF6], with the highest viscosity, demonstrated a very nonlinear pressure dependence even at relatively moderate pressures (to 30 MPa), similar to the results for [BMIm][PF6]. A combined Litovitz and Tait equation was utilized to describe the viscosity of the ionic liquids with pressure and temperature and demonstrated good correlation with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Forsyth S.A., Pringle J.M., MacFarlane D.R.: Aus. J. Chem. 57, 113 (2004)

    Article  Google Scholar 

  2. Wilkes J.S.: J. Mol. Cat. A 214, 11 (2004)

    Article  Google Scholar 

  3. Ropel L., Belveze L.S., Aki S., Stadtherr M.A., Brennecke J.F.: Green Chem. 7, 83 (2005)

    Article  Google Scholar 

  4. Ahosseini A., Ren W., Scurto A.: Chem. Today/Chim. Oggi 25, 40 (2007)

    Google Scholar 

  5. Blanchard L.A., Hancu D., Beckman E.J., Brennecke J.F.: Nature 399, 28 (1999)

    Article  ADS  Google Scholar 

  6. Cadena C., Anthony J.L., Shah J.K., Morrow T.I., Brennecke J.F., Maginn E.J.: J. Am. Chem. Soc. 126, 5300 (2004)

    Article  Google Scholar 

  7. Fadeev A.G., Meagher M.M. Chem. Comm. 295 (2001)

  8. Visser A.E., Swatloski R.P., Reichert W.M., Griffin S.T., Rogers R.D.: Ind. Eng. Chem. Res 39, 3596 (2000)

    Article  Google Scholar 

  9. Quinn B.M., Ding Z., Moulton R., Bard A.J.: Langmuir 18, 1734 (2002)

    Article  Google Scholar 

  10. Wilkes J.S., Levisky J.A., Wilson R.A., Hussey C.L.: Inorg. Chem. 21, 1263 (1982)

    Article  Google Scholar 

  11. Endres F.: ChemPhysChem 3, 144 (2002)

    Article  Google Scholar 

  12. Fuller J., Carlin R.T., Osteryoung R.A.: J. Electrochem. Soc. 144, 3881 (1997)

    Article  Google Scholar 

  13. Fuller J., Breda A.C., Carlin R.T.: J. Electroanal. Chem. 459, 29 (1998)

    Article  Google Scholar 

  14. Lu W., Fadeev A.G., Qi B., Smela E., Mattes B.R., Ding J., Spinks G.M., Mazurkiewicz J., Zhou D., Wallace G.G.: Science 297, 983 (2002)

    Article  ADS  Google Scholar 

  15. Chauvin Y., Mussmann L., Olivier H.: Angew. Chem. Int. Ed. 34, 2698 (1995)

    Google Scholar 

  16. Kragl U., Eckstein M., Kaftzik N.: Curr. Opin. Biotech. 13, 565 (2002)

    Article  Google Scholar 

  17. Lozano P., De Diego T., Carrié D., Vaultier M., Iborra J.L.: Biotech. Lett. 23, 1529 (2001)

    Article  Google Scholar 

  18. Sheldon R.A., Lau R.M., Sorgedrager M.J., van Rantwijk F., Seddon K.R.: Green Chem. 4, 147 (2002)

    Article  Google Scholar 

  19. Welton T.: Chem. Rev. 99, 2071 (1999)

    Article  Google Scholar 

  20. Zhao D., Wu M., Kou Y., Min E.: Catal. Today 74, 157 (2002)

    Article  Google Scholar 

  21. Van Valkenburg M.E., Vaughn R.L., Williams M., Wilkes J.S.: Thermochim. Acta 425, 181 (2005)

    Article  Google Scholar 

  22. Koch V.R., Nanjundiah C., Carlin R.T., U.S. Patent No. 5,827,602, Oct. 27, 1998

  23. Bird R.B., Stewart W.E., Lightfoot E.N.: Transport Phenomena. Wiley, New York (1960)

    Google Scholar 

  24. Tokuda H., Ishii K., Susan M., Tsuzuki S., Hayamizu K., Watanabe M.: J. Phys. Chem. B 110, 2833 (2006)

    Article  Google Scholar 

  25. Harris K.R., Kanakubo M., Woolf L.A.: J. Chem. Eng. Data 51, 1161 (2006)

    Article  Google Scholar 

  26. Kelkar M.S., Maginn E.J.: J. Phys. Chem. B 111, 4867 (2007)

    Article  Google Scholar 

  27. Glasstone S., Laidler K.J., Eyring H.: The Theory of Rate Processes. McGraw-Hill, New York (1941)

    Google Scholar 

  28. Kelkar M.S., Maginn E.J.: J. Phys. Chem. B 111, 4867 (2007)

    Article  Google Scholar 

  29. Abbott A.P., Capper G., Gray S.: ChemPhysChem 7, 803 (2006)

    Article  Google Scholar 

  30. Abbott A.P.: ChemPhysChem 6, 2503 (2005)

    Google Scholar 

  31. Abbott A.P.: ChemPhysChem 5, 1242 (2004)

    Article  Google Scholar 

  32. Vogel H.: Phys. Z 22, 645 (1921)

    Google Scholar 

  33. Fulcher G.S.: Am. Ceram. Soc. J. 8, 339 (1925)

    Article  Google Scholar 

  34. Tammann G., Hesse W.: Z. Anorg. Allg. Chem. 156, 245 (1926)

    Article  Google Scholar 

  35. Litovitz T.A.: J. Chem. Phys. 20, 1088 (1952)

    Article  ADS  Google Scholar 

  36. Litovitz T.A.: J. Chem. Phys. 20, 1980 (1952)

    Article  ADS  Google Scholar 

  37. Crosthwaite J.M., Muldoon M.J., Dixon J.K., Anderson J.L., Brennecke J.F.: J. Chem. Thermodyn. 37, 559 (2005)

    Article  Google Scholar 

  38. Tokuda H., Hayamizu K., Ishii K., Susan M., Watanabe M.: J. Phys. Chem. B 108, 16593 (2004)

    Article  Google Scholar 

  39. Tokuda H., Hayamizu K., Ishii K., Susan M., Watanabe M.: J. Phys. Chem. B 109, 6103 (2005)

    Article  Google Scholar 

  40. Harris K.R., Woolf L.A., Kanakubo M.: J. Chem. Eng. Data 50, 1777 (2005)

    Article  Google Scholar 

  41. Harris K.R., Kanakubo M., Woolf L.A.: J. Chem. Eng. Data 52, 1080 (2007)

    Article  Google Scholar 

  42. Kanakubo M., Harris K.R., Tsuchihashi N., Ibuki K., Ueno M.: J. Phys. Chem. B 111, 2062 (2007)

    Article  Google Scholar 

  43. Tomida D., Kumagai A., Qiao K., Yokoyama C.: Int. J. Thermophys. 27, 39 (2006)

    Article  Google Scholar 

  44. Tomida D., Kumagai A., Kenmochi S., Qiao K., Yokoyama C.: J. Chem. Eng. Data 52, 577 (2007)

    Article  Google Scholar 

  45. Dymond J.H., Malhotra R.: Int. J. Thermophys. 9, 941 (1988)

    Article  Google Scholar 

  46. Kashiwagi H., Makita T.: Int. J. Thermophys. 3, 289 (1982)

    Article  Google Scholar 

  47. Bonhôte P., Dias A.P., Papageorgiou N., Kalyanasundaram K., Gratzel M.: Inorg. Chem. 35, 1168 (1996)

    Article  Google Scholar 

  48. Burrell A.K., Sesto R.E.D., Baker S.N., McCleskey T.M., Baker G.A.: Green Chem. 9, 449 (2007)

    Article  Google Scholar 

  49. Nockemann P., Binnemans K., Driesen K.: Chem. Phys. Lett. 415, 131 (2005)

    Article  ADS  Google Scholar 

  50. Maruyama T., Nagasawa S., Goto M.: Biotech. Lett. 24, 1341 (2002)

    Article  Google Scholar 

  51. Wang B., Kang Y.R., Yang L.M., Suo J.S.: J. Mol. Catal. A 203, 29 (2003)

    Article  ADS  Google Scholar 

  52. Dymond J.H., Young K.J., Isdale J.D.: Int. J. Thermophys. 1, 345 (1980)

    Google Scholar 

  53. Kiran E., Sen Y.L.: Int. J. Thermophys. 13, 411 (1992)

    Article  Google Scholar 

  54. Oliveira C.M.B.P., Wakeham W.A.: Int. J. Thermophys. 13, 773 (1992)

    Article  Google Scholar 

  55. Fieggen W.: Recl. Trav. Chim. Pay. B 89, 625 (1970)

    Google Scholar 

  56. Ray H.S., Pal S.: Ironmak. Steelmak. 31, 125 (2004)

    Article  Google Scholar 

  57. Xiong Y., Kiran E.: Polymer 38, 5185 (1997)

    Article  Google Scholar 

  58. Dyre J.C., Christensen T., Olsen N.B.: J. Non-Cryst. Solids 352, 4635 (2006)

    Article  ADS  Google Scholar 

  59. Mano J.F., Pereira E.: J. Phys. Chem. 108, 10824 (2004)

    Google Scholar 

  60. Huddleston J.G., Visser A.E., Reichert W.M., Willauer H.D., Broker G.A., Rogers R.D.: Green Chem. 3, 156 (2001)

    Article  Google Scholar 

  61. Angell C.: J. Phys. Chem. Solids 49, 863 (1988)

    Article  ADS  Google Scholar 

  62. Seddon K.R., Stark A., Torres M.J.: Pure Appl. Chem. 72, 2275 (2000)

    Article  Google Scholar 

  63. Widegren J.A., Laesecke A., Magee J.W. Chem. Commun. 1610 (2005)

  64. Tokuda H., Ishii K., Susan M., Tsuzuki S., Hayamizu K., Watanabe M.: J. Phys. Chem. B 110, 2833 (2006)

    Article  Google Scholar 

  65. Gomesde Azevedo R., Esperança J.M.S.S., Najdanovic-Visak V., Visak Z.P., Guedes H.J.R., Nunesda Ponte M., Rebelo L.P.N.: J. Chem. Eng. Data 50, 997 (2005)

    Article  Google Scholar 

  66. Gomesde Azevedo R., Esperança J., Szydlowski J., Visak Z.P., Pires P.F., Guedes H.J.R., Rebelo L.P.N.: J. Chem. Thermodyn. 37, 888 (2005)

    Article  Google Scholar 

  67. Sanmamed Y.A., González-Salgado D., Troncoso J., Cerdeiriña C.A., Romaní L.: Fluid Phase Equilib. 252, 96 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron M. Scurto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahosseini, A., Scurto, A.M. Viscosity of Imidazolium-Based Ionic Liquids at Elevated Pressures: Cation and Anion Effects. Int J Thermophys 29, 1222–1243 (2008). https://doi.org/10.1007/s10765-008-0497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-008-0497-7

Keywords

Navigation