Skip to main content
Log in

Thermal Conductivity of Xonotlite Insulation Material

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A surface-contact hollow cubic model is developed for coupled heat transfer of gas and solid in xonotlite-type calcium silicate insulation material based on its microstructure features. Through one-dimensional heat conduction analysis in the unit cell structure, a conductive thermal conductivity expression is obtained. A transient hot strip method is used to measure the thermal conductivity of xonotlite from 300 to 970K and from 0.045Pa to atmospheric pressure. The spectral specific extinction coefficients are derived from transmission measurements on a thin xonotlite sample performed with a Fourier transform infrared (FTIR) spectrometer. The results show that the specific spectral extinction coefficients are larger than 7m2·kg−1 over the whole measured spectra, and the diffusion approximation equation is a reasonable description of radiative heat transfer in xonotlite insulation material. The effective thermal conductivity model matches extremely well with the experimental data, which is important for the thermal design and thermal analysis of xonotlite insulation material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wieslawa N.W. (1999). Cement Concrete Res 29: 1759

    Article  Google Scholar 

  2. Ni W., Cao Z.Y. and Shu X.L. (1996). China Petrol. Mach. 24: 495 [in Chinese]

    Google Scholar 

  3. Li M.Q., Chen F.Y., Xia S.Q., Li J.H. and Liang H.X. (2000). J. Chinese Ceram. Soc. 28: 401 [in Chinese]

    Google Scholar 

  4. Zheng Q.J. and Wang W. (2000). Brit. Ceram. Trans. 99: 187

    Article  Google Scholar 

  5. Hrubesh L.W. and Pekala R.W. (1994). J. Mater. Res. 9: 731

    Article  ADS  Google Scholar 

  6. Burns P.J. and Tien C.L. (1979). Int. J. Heat Mass Transfer 22: 929

    Article  ADS  Google Scholar 

  7. Russell H.W. (1935). J. Am. Ceram. Soc. 18: 1

    Article  Google Scholar 

  8. Kunii D. and Smith J.M. (1960). AICHE J. 6: 71

    Article  Google Scholar 

  9. Zehner P. and Schlunder E.U. (1970). Chem. Ing. Tech. 42: 933

    Article  Google Scholar 

  10. Nozad S., Carbonell R.G. and Whitaker S. (1985). Chem. Eng. Sci. 40: 843

    Article  Google Scholar 

  11. Verma L.S., Shrotriya A.K., Singh R. and Chaudhary D.R. (1991). J. Phys. D: Appl. Phys. 24: 1729

    Article  ADS  Google Scholar 

  12. Hsu C.T., Cheng P. and Wong K.W. (1995). J. Heat Transfer 177: 264

    Google Scholar 

  13. Yu F., Wei G.S., Zhang X.X. and Chen K. (2006). Int. J. Thermophys. 27: 293

    Article  Google Scholar 

  14. Chen K., Yu F., Zhang X.X. and Wei G.S. (2004). J. Univ. Sci. Technol. Beijing 26: 650

    ADS  Google Scholar 

  15. Siegel R. and Howell J.R. (2002). Thermal radiation heat transfer. Taylor & Francis, London

    Google Scholar 

  16. Zhang X.X., Wei G.S. and Yu F. (2005). J. Therm. Sci. 14: 281

    Article  ADS  Google Scholar 

  17. Gustafsson S.E., Karawack E. and Khan M.N. (1979). J. Phys. D: Appl. Phys. 12: 1411

    Article  ADS  Google Scholar 

  18. Lu X., Ardunini-Schuster M.C., Kuhn J., Nilsson O., Fricke J. and Pekala R.W. (1992). Science 221: 971

    Article  ADS  Google Scholar 

  19. Lee O.J., Lee K.H., Yim T.J., Kim S.Y. and Yoo K.P. (2002). J. Non-Cryst. Solids 298: 287

    Article  Google Scholar 

  20. Touloukian Y.S., Liley P.E. and Saxena S.C. (1970). Thermal conductivity: nonmetallic liquids and gases. IFI/Plenum, New York

    Google Scholar 

  21. Touloukian Y.S., Liley P.E. and Saxena S.C. (1970). Thermal Conductivity: Nonmetallic Solids. IFI/Plenum, New York

    Google Scholar 

  22. Ni W., Cao Z.Y. and Shu X.L. (1996). J. Univ. Sci. Technol. Beijing 18: 495 [in Chinese]

    Google Scholar 

  23. Mao Z.J. and Sheng J.X. (1997). Bull. Chinese Ceram. Soc. 1: 50 [in Chinese]

    Google Scholar 

  24. Fang C.L. and Song D.S. (2000). Non-Metallic Mines 23: 28 [in Chinese]

    Google Scholar 

  25. Wang Z.Y., Huang Y.M., Wu M.M. and Xue G.Q. (1997). Naihuo Cailiao 31: 134 [in Chinese]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaosheng Wei.

Additional information

Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, G., Zhang, X. & Yu, F. Thermal Conductivity of Xonotlite Insulation Material. Int J Thermophys 28, 1718–1729 (2007). https://doi.org/10.1007/s10765-007-0214-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0214-y

Keywords

Navigation