Skip to main content
Log in

Excess Molar Isentropic Compressibilities, Excess Molar Volumes, and Excess Sound Speeds of the 1-Propanol + Diethyl Ether + 1-Octanol Ternary Mixture and Constituent Binary Mixtures at 298.15 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

The sound speeds and densities of the 1-propanol + diethyl ether + 1-octanol ternary mixture and constituent binary mixtures, 1-propanol + diethyl ether, 1-propanol + 1-octanol, and diethyl ether + 1-octanol, have been measured at 298.15 K as a function of composition. Isentropic compressibilities, molar isentropic compressibilities, excess molar isentropic compressibilities, excess molar volumes, and excess sound speeds have been calculated from the experimental density and sound speed data. Excess molar volumes, excess molar isentropic compressibilities, and excess sound speeds of the binary mixtures were fitted to the Redlich–Kister equation. By using the free length theory (FLT), Schaaff’s collision factor theory (CFT), Nomoto’s relation (NR), Van Deal’s ideal mixing relation (IMR), and Junjie’s relation (JR), sound-speed values of the investigated mixtures were calculated. These values were compared with the experimental sound-speed results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Canosa J., Rodriguez A., Tojo J. (1999). Fluid Phase Equilib. 156:57

    Article  Google Scholar 

  2. Rodriguez A., Canosa J., Tojo J. (1999). J. Chem. Thermodyn. 31:1009

    Article  Google Scholar 

  3. Letcher T.M., Govender P.U. (1997). Fluid Phase Equilib. 140:207

    Article  Google Scholar 

  4. Arce A., Rodil E., Soto A. (1997). J. Chem. Eng. Data 42:721

    Article  Google Scholar 

  5. Savaroglu G., Aral E. (2006). Pramana-J. Phys. 66:435

    ADS  Google Scholar 

  6. Baker F. (1912). J. Chem. Soc. Trans. 101:1409

    Article  Google Scholar 

  7. Jacobson B. (1952). J. Chem. Phys. 6:927

    Article  ADS  Google Scholar 

  8. Jacobson B. (1952). Acta Chem. Scand. 6:1485

    Article  Google Scholar 

  9. W. Schaaffs, Molekularakustik (Springer-Verlag, Berlin, Göttingen, Heidelberg, Germany, 1963).

  10. Nomoto O. (1958). J. Phys. Soc. 13:1528

    Article  ADS  Google Scholar 

  11. W. Van Deal and E. Vageel, Proc. First Int. Conf. Calorim. Thermodyn., Warsaw (1969), p. 556.

  12. Junjie Z. (1984). J. Chem. Univ. Sci. Tech. 14:298

    Google Scholar 

  13. Cerdeirina C.A., Tovar C.A., Troncoso J., Carballo E., Romani L. (1999). Fluid Phase Equilib. 157:93

    Article  Google Scholar 

  14. J. A. Riddich, W. B. Bunger, and T. K. Sokano, Organic Solvents. Physical Properties and Methods of Purification (Techniques of Chemistry), 4th Ed., Vol. 2 (Wiley/Interscience, New York, 1986).

  15. Savaroglu G., Aral E. (2005). Int. J. Thermophys. 26:1525

    Article  Google Scholar 

  16. Iglesias T.P., Legido J.L., Romani L., Paz Andrade M.I. (1993). Phys. Chem. Liq. 25:135

    Google Scholar 

  17. Gonzalez C., Iglesias M., Lanz J., Marino G., Orge B., Resa J.M. (2001). J. Food Eng. 50:29

    Article  Google Scholar 

  18. Kiyohara O., Benson G.C. (1981). J. Solution Chem. 10:281

    Article  Google Scholar 

  19. de Cominges B.E., Pineiro M.M., Iglesias T.P., Legido J.L., Paz Andrade M.I. (1998). J. Chem. Thermodyn. 30:1147

    Article  Google Scholar 

  20. Pineiro A., Amigo A., Bravo R., Brocos P. (2000). Fluid Phase Equilib. 173:211

    Article  Google Scholar 

  21. R. H. Perry and D. W. Green, Perry’s Chemical Engineers Handbook, 7th Ed. (McGraw-Hill, New York, 1997).

  22. Pineiro A., Brocos P., Amigo A., Pintos M. (2002). J. Solution Chem. 31:369

    Article  Google Scholar 

  23. CDATA, Database of Thermodynamic and Transport Properties for Chemistry and Engineering, Version 1.020 (Department of Physical Chemistry, Institute of Chemical Technology, Prague, Czech Republic, 1999).

  24. Calvo E., Brocos P., Pineiro A., Pintos M., Amigo A., Bravo R., Roux- Desgranges A.H. (1999). J. Chem. Eng. Data 44:948

    Article  Google Scholar 

  25. Douheret G., Pal A., Davis M.I. (1990). J. Chem. Thermodyn. 22:99

    Article  Google Scholar 

  26. Douheret G., Salgado C., Davis M.I., Loya J. (1992). Thermochim. Acta 207:313

    Article  Google Scholar 

  27. Douheret G., Davis M.I., Reis J.C.R., Blandamer M.J. (2001). Phys. Chem. Chem. Phys. 2:148

    Google Scholar 

  28. Redlich O., Kister A.T. (1948). Ind. Eng. Chem. 40:345

    Article  Google Scholar 

  29. Cibulka I. (1982). Coll. Czech. Chem. Commun. 47:144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gokhan Savaroglu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savaroglu, G., Tasagal, D. & Aral, E. Excess Molar Isentropic Compressibilities, Excess Molar Volumes, and Excess Sound Speeds of the 1-Propanol + Diethyl Ether + 1-Octanol Ternary Mixture and Constituent Binary Mixtures at 298.15 K. Int J Thermophys 28, 245–258 (2007). https://doi.org/10.1007/s10765-007-0166-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0166-2

Keywords

Navigation