Skip to main content

Advertisement

Log in

Thermodynamic Properties of Gases from Speed-of-Sound Measurements

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

A procedure for deriving thermodynamic properties of gases from speed of sound is presented. It is based on numerical integration of ordinary differential equations (ODEs) (rather than partial differential equations—PDEs) connecting speed of sound with other thermodynamic properties in the T-p domain. The procedure enables more powerful methods of higher-order approximation to ODEs to be used (e.g., Runge-Kutta) and requires only Dirichlet initial conditions. It was tested on gaseous argon in the temperature range from 250 to 450 K and in the pressure range from 0.2 to 12 MPa, and also on gaseous methane in the temperature range from 275 to 375 K and in the pressure range from 0.4 to 10 MPa. The density and isobaric heat capacity of argon were derived with absolute average deviations of 0.007% and 0.03%, respectively. The density and isobaric heat capacity of methane were derived with absolute average deviations of 0.006% and 0.09%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biswas S.N., ten Seldam C.A. (1991). J. Chem. Thermodyn. 23:725

    Article  Google Scholar 

  2. ten Seldam C.A., Biswas S.N. (1991). J. Chem. Phys. 94:2130

    Article  ADS  Google Scholar 

  3. ten Seldam C.A., Biswas S.N. (1992). J. Chem. Phys. 96:6163

    Article  ADS  Google Scholar 

  4. Biswas S.N., ten Seldam C.A. (1992). Fluid Phase Equilib. 74:219

    Article  Google Scholar 

  5. Biswas S.N., ten Seldam C.A., Schouten J.A. (1997). Physica A 246:45

    Article  ADS  Google Scholar 

  6. Trusler J.P.M., Zarari M.P. (1992). J. Chem. Thermodyn. 24:973

    Article  Google Scholar 

  7. Estrada-Alexanders A.F., Trusler J.P.M., Zarari M.P. (1995). Int. J. Thermophys. 16:663

    Article  Google Scholar 

  8. Estrada-Alexanders A.F., Trusler J.P.M. (1995). J. Chem. Thermodyn. 27:1075

    Article  Google Scholar 

  9. Estrada-Alexanders A.F., Trusler J.P.M. (1996). Int. J. Thermophys. 17:1325

    Article  Google Scholar 

  10. Estrada-Alexanders A.F., Trusler J.P.M. (1997). J. Chem. Thermodyn. 29:991

    Article  Google Scholar 

  11. Dayton T.C., Beyerlein S.W., Goodwin A.R.H. (1999). J. Chem. Thermodyn. 31:847

    Article  Google Scholar 

  12. Estrada-Alexanders A.F., Justo D. (2004). J. Chem. Thermodyn. 36:419

    Article  Google Scholar 

  13. Benedetto G., Gavioso R.M., Giuliano Albo P.A., Lago S., Madonna Ripa D., Spagnolo R. (2005). Int. J. Thermophys. 26:1667

    Article  Google Scholar 

  14. J. P. M. Trusler, Physical Acoustics, Metrology of Fluids (Adam Hilger, Bristol, 1991), p. 7.

  15. Tgeler Ch., Span R., Wagner W. (1999). J. Phys. Chem. Ref. Data 28:779

    Article  ADS  Google Scholar 

  16. Setzmann U., Wagner W. (1991). J. Phys. Chem. Ref. Data 20:1061

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bijedić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bijedić, M., Neimarlija, N. Thermodynamic Properties of Gases from Speed-of-Sound Measurements. Int J Thermophys 28, 268–278 (2007). https://doi.org/10.1007/s10765-007-0147-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-007-0147-5

Keywords

Navigation