Skip to main content
Log in

Debye Fluid State Equation

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

A new form of a fluid state equation, based on a conceptual extrapolation from the Debye equation for the specific heat of solid materials is described. The Debye characteristic temperature, Θ, which is nominally a constant for solids, becomes a function of the fluid density ρ. Further assuming \({\Theta = c_{1}\rho^{2/3}(1 + c_{2} \rho + c_{3} \rho ^{2} + {\cdots})}\) yields the conventional fluid virial equation in the high-T and low-ρ limits for a monatomic fluid. Additional terms must be added to describe (a) the compressibility of the dense subcooled fluid and (b) properties in the near-critical range. Discussion of the Gruneisen parameter and other factors is included. This Debye fluid theory was used as a state equation for 3He, continuous from 0.005 K to above room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. W. Lemmon, M. O. McLinden, and M. L. Huber, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP [computer program], Version 7.0 (National Institute of Standards and Technology, Boulder, CO, USA, 2002).

  2. Huang Y.H., Chen G.B., Arp V.D. (2006). Appl. Phys. Lett. 88:091905

    Article  ADS  Google Scholar 

  3. Huang Y.H., Chen G.B., Arp V.D. (2006). J. Chem. Phys. 125:054505

    Article  ADS  Google Scholar 

  4. Debye P. (1912). Ann. Physik. 39:789

    Article  ADS  Google Scholar 

  5. Donnelly R.J., Roberts P.H. (1977). J. Low Temp. Phys. 27:687

    Article  ADS  Google Scholar 

  6. Blackman M. (1941). Rep. Prog. Phys. 8:11

    Article  ADS  Google Scholar 

  7. Petit A.T., Dulong P.L. (1819). Ann. Chim. Phys. 10:395

    Google Scholar 

  8. Hurly J.J., Moldover (2000). J. Res. Natl. Inst. Stand. Tech. 105: 667

    Google Scholar 

  9. Arp (2005). Int. J. Thermophys. 26:1477

    Article  Google Scholar 

  10. Arp V.D., Persichetti J.M., Chen G.B. (1984). J. Fluids Eng. 106:193

    Article  Google Scholar 

  11. V. D. Arp, Hepak and Gaspak Source Codes [computer program] (Cryodata Inc., Boulder, CO, 1989).

  12. E. W. Lemmon, A. P. Peskin, M. O. McLinden, and D. G. Friend, NIST Standard Reference Database 12: NIST Thermodynamic and Transport Properties of Pure Fluids Database [computer program], Version 5.0 (National Institute of Standards and Technology, Boulder, CO, 2000).

  13. McCarty R.D. Arp V.D. (1990). Adv. Cryo. Eng. 35:1465

    Google Scholar 

  14. Nellis W.J., Holmes N.C., Mitchell A.C., Trainor R.J., Governo G.K., Young D.A. (1984) Phys. Rev. Lett. 53:1248

    Article  ADS  Google Scholar 

  15. Dugdale J.S., Franck J.P. (1964). Philos. Trans. R. Soc. London, Ser. A. 257:1

    Article  ADS  Google Scholar 

  16. Gammon B.E. (1976). J. Chem. Phys. 64:2556

    Article  ADS  Google Scholar 

  17. Glassford A.P.M., Smith J.L. Jr. (1966). Cryogenics. 6:193

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. H. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arp, V., Huang, Y.H., Radebaugh, R. et al. Debye Fluid State Equation. Int J Thermophys 28, 417–428 (2007). https://doi.org/10.1007/s10765-006-0141-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0141-3

Keywords

Navigation