Skip to main content
Log in

He4 State Equation Below 0.8 K

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work develops the Helmholtz potential A(ρ, T) for He4 below 0.8 K. Superfluid terms, related to temperature and momentum gradients, are neglected with negligible loss of accuracy in the derived state properties (specific heats, first sound velocity, expansivity, compressibility, etc.). Retained terms are directly related to a bulk fluid compressibility plus phonon and roton excitations in this quantum fluid. The bulk fluid compressibility is found from the empirical equation c 31 ≈ c 310 + b; P, where c1 is the velocity of first sound, P is the pressure, and c10 and b are constants; this empirical equation is found to apply also to other helium temperature ranges and to other fluids. The phonon excitations lead to a single temperature-dependent term in A(ρ ,T) up to 0.3 K, with only two more terms added up to 0.8 K. The roton potential, negligible below about 0.3 K, is a single term first derived 60 years ago but little used in more recent work. The final A(ρ ,T) is shown to fit available experimental specific heat data to about ±2% or better. The magnitude of the pressure-independent Gruneisen parameter below 0.3 K is typical of highly compressed normal liquids. Extension of the equation above 0.8 K is hampered by lack of data between 0.8 and 1.2 K

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Maynard (1976) Phys Rev B 14 3868 Occurrence Handle10.1103/PhysRevB.14.3868

    Article  Google Scholar 

  2. M.S. Mongiovi (1993) Phys Rev B 48 6276 Occurrence Handle10.1103/PhysRevB.48.6276

    Article  Google Scholar 

  3. L. Landau (1941) J. Phys. 5 71

    Google Scholar 

  4. L. Landau (1947) J. Phys. 11 91

    Google Scholar 

  5. R.J. Donnelly P.H. Roberts (1977) J. Low. Temp. Phys. 27 687 Occurrence Handle10.1007/BF00655704

    Article  Google Scholar 

  6. J.S. Brooks R.J. Donnelly (1977) J. Phys. Chem. Ref. Data 6 51

    Google Scholar 

  7. McCarty R.D. (1980). NBS Tech Note 1029.

  8. N.E. Phillips C.G. Waterfield J.K. Hoffer (1970) Phys. Rev. Letters 25 1260 Occurrence Handle10.1103/PhysRevLett.25.1260

    Article  Google Scholar 

  9. N. E. Phillips, private communication (Univ. of California).

  10. D.S. Greywall (1978) Phys Rev B 18 2127 Occurrence Handle10.1103/PhysRevB.18.2127

    Article  Google Scholar 

  11. D.S. Greywall (1979) Phys Rev B 21 1329 Occurrence Handle10.1103/PhysRevB.21.1329

    Article  Google Scholar 

  12. R.J. Donnelly C.F. Barenghi (1998) J. Phys. Chem. Ref. Data 27 1217

    Google Scholar 

  13. H. Preston Thomas (1990) Metrologia 27 3 Occurrence Handle10.1088/0026-1394/27/1/002

    Article  Google Scholar 

  14. M. Durieux R.L. Rusby (1983) Metrologia 19 67 Occurrence Handle10.1088/0026-1394/19/2/004

    Article  Google Scholar 

  15. Abraham B.M., Eckstein Y., Ketterson J.B., Kuchnir M., Roach P.R. Phys Rev. A1: 250 (1970); Erratum: Phys. Rev.A2:550 (1970)

    Google Scholar 

  16. H.J. Maris (1991) Phys. Rev. Lett. 66 45 Occurrence Handle10.1103/PhysRevLett.66.45 Occurrence Handle10043138

    Article  PubMed  Google Scholar 

  17. J.J. Niemela R.J. Donnelly (1995) J. Low Temp. Phys. 98 1 Occurrence Handle10.1007/BF00754064

    Article  Google Scholar 

  18. W.M. Whitney C.E. Chase (1967) Phys Rev. 158 200 Occurrence Handle10.1103/PhysRev.158.200

    Article  Google Scholar 

  19. V. Arp J.M. Persichetti G.B. Chen (1984) J. Fluids Eng. 106 193

    Google Scholar 

  20. A.D.B. Woods P.A. Hilton R. Scherm W.G. Stirling (1977) J. Phys. C 10 45 Occurrence Handle10.1088/0022-3719/10/3/002

    Article  Google Scholar 

  21. V. Arp (1990) J. Low Temp. Phys. 79 1 Occurrence Handle10.1007/BF00683459

    Article  Google Scholar 

  22. E.R. Grilly R.L. Mills (1962) Ann Phys. 18 250 Occurrence Handle10.1016/0003-4916(62)90069-6

    Article  Google Scholar 

  23. V. Arp (to be published).

  24. J.A. Lipa D.R. Swanson J.A. Nissen T.C.P. Chui U.E. Israelsson (1996) Phys. Rev. Lett. 76 944 Occurrence Handle10.1103/PhysRevLett.76.944 Occurrence Handle10061591

    Article  PubMed  Google Scholar 

  25. M. Strosser M. Monnigmann V. Dohm (2000) Physica B 284-288 41 Occurrence Handle10.1016/S0921-4526(99)02006-2

    Article  Google Scholar 

  26. B.E. Gammon (1976) J. Chem. Phys. 64 2556

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Arp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arp, V. He4 State Equation Below 0.8 K. Int J Thermophys 26, 1477–1493 (2005). https://doi.org/10.1007/s10765-005-8098-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-005-8098-1

Keywords

Navigation