Skip to main content
Log in

Corresponding-States Modeling of the Speed of Sound of Long-Chain Hydrocarbons

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Models based on the corresponding-states principle have been extensively used for several equilibrium and transport properties of different pure and mixed fluids. Some limitations, however, have been encountered with regard to its application to long chain or polar molecules. Following previous studies, where it was shown that the corresponding-states principle could be used to predict thermophysical properties such as vapor–liquid interfacial tension, vapor pressure, liquid density, viscosity, and thermal conductivity of long-chain alkanes, the application of the corresponding-states principle to the estimation of speeds of sound, with a special emphasis on the less studied heavier n-alkane members, is presented. Results are compared with more than four thousand experimental data points as a function of temperature and pressure for n-alkanes ranging from ethane up to n-hexatriacontane. Average deviations are less than 2%, demonstrating the reliability of the proposed model for the estimation of speeds of sound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ali S.M.F. (2003). J. Pet. Sci. Technol. 37:5

    Article  Google Scholar 

  2. Babadagli T. (2003). J. Pet. Sci. Technol. 37:25

    Article  Google Scholar 

  3. Riazi M.R., Mansoori G.A. (1993). Fluid Phase Equilib. 90:251

    Article  Google Scholar 

  4. Trusler J.P.M., Zarari M.P. (1996). J. Chem. Thermodyn. 28:329

    Article  Google Scholar 

  5. Estrada-Alexanders A.F., Trusler J.P.M. (1997). J. Chem. Thermodyn. 29:991

    Article  Google Scholar 

  6. Lee B., Kesler M. (1975). AIChE J. 21:510

    Article  Google Scholar 

  7. Lagourette B., Daridon J.L., Gaubert J.F., Saint-Guirons H. (1995). J. Chem. Thermodyn. 27:259

    Article  Google Scholar 

  8. Lagourette B., Daridon J.L., Gaubert J.F., Xans P. (1994). J. Chem. Thermodyn. 26:1051

    Article  Google Scholar 

  9. Dutour S. (2000). Vitesse du Son et Propriétés Thermodynamiques Dérivées Dans des Hydrocarbures de Haut Poids Moléculaire Sous des Pressions Élevées. Ph. D. Thesis, Université de Pau et des Pays de L’Adour, Pau, France

    Google Scholar 

  10. Queimada A.J., Stenby E.H., Marrucho I.M., Coutinho J.A.P. (2003). Fluid Phase Equilib. 212:303

    Article  Google Scholar 

  11. Queimada A.J., Marrucho I.M., Coutinho J.A.P., Stenby E.H. (2005). Int. J. Thermophys. 26:47

    Article  Google Scholar 

  12. Queimada A.J., Silva F.A.E., Caço A.I., Marrucho I.M., Coutinho J.A.P. (2003). Fluid Phase Equilib. 214:211

    Article  Google Scholar 

  13. Queimada A.J., Marrucho I.M., Coutinho J.A.P. (2001). Fluid Phase Equilib. 183–184:229

    Article  Google Scholar 

  14. Paradela F., Queimada A.J., Marrucho I.M., Neto C.P., Coutinho J.A.P. (2005). Int. J. Thermophys. 26:1461

    Article  Google Scholar 

  15. Queimada A.J., Caço A.I., Marrucho I.M., Coutinho J.A.P. (2005). J. Chem. Eng. Data 50:1043

    Article  Google Scholar 

  16. Rolo L.I., Caço A.I., Queimada A.J., Marrucho I.M., Coutinho J.A.P. (2002). J. Chem. Eng. Data 47:1442

    Article  Google Scholar 

  17. Queimada A.J., Rolo L.I., Caço A.I., Marrucho I.M., Stenby E.H., Coutinho J.A.P. (2006). Fuel 85:874

    Article  Google Scholar 

  18. J. F. Ely, I. M. Marrucho, in Equations of State for Fluids and Fluid Mixture, Part 1, J. V. Sengers, R. F. Kayser, C. J. Peters, and H. J. White Jr., eds. (Elsevier, Amsterdam, 2000).

  19. Guggenheim E. (1945). J. Chem. Phys. 13:253

    Article  ADS  Google Scholar 

  20. Leland T.W., Chappelear P.S. (1968). Ind. Eng. Chem. 60:15

    Article  Google Scholar 

  21. Reed T.M., Gubbins K.E. (1973). Applied Statistical Mechanics. McGraw-Hill, New York, Chap. 11

    Google Scholar 

  22. Rowlinson J.S., Swinton F.L. (1982). Liquids and Liquid Mixtures. Butterworths, London

    Google Scholar 

  23. Pitzer K.S. (1939). J. Chem. Phys. 7:583

    Article  ADS  Google Scholar 

  24. Morgan D.L., Kobayashi R. (1994). Fluid Phase Equilib. 94:51

    Article  Google Scholar 

  25. Pitzer K.S., Lippmann D.Z., Curl R.F., Huggins C.M., Petersen D.E. (1955). J. Am. Chem. Soc. 77: 3433

    Article  Google Scholar 

  26. Poling B.E., Prausnitz J.M., O’Connell J.P. (2000). The Properties of Gases and Liquids, 5th Ed. McGraw-Hill, New York

    Google Scholar 

  27. Xiang H.W. (2002). Chem. Eng. Sci. 57:1439

    Article  Google Scholar 

  28. Teja A.S., Sandler S.I., Patel N.C. (1981). Chem. Eng. J. 21:21

    Article  Google Scholar 

  29. Munõz F., Reich R. (1983). Fluid Phase Equilib. 13:171

    Article  Google Scholar 

  30. Teja A.S. (1980). AIChE J. 26:337

    Article  Google Scholar 

  31. Rice P., Teja A.S. (1982). J. Coll. Interf. Sci. 86:158

    Article  Google Scholar 

  32. Zuo Y., Stenby E.H. (1997). Can. J. Chem. Eng. 75:1130

    Google Scholar 

  33. Ely J.F., Hanley H.J.M. (1981). Ind. Eng. Chem. Fundam. 20:323

    Article  Google Scholar 

  34. Klein S.A., McLinden M.O., Laesecke A. (1997). Int. J. Refrig. 20:208

    Article  Google Scholar 

  35. Lee M., Wei M. (1993). J. Chem. Eng. Jpn. 26:159

    Article  Google Scholar 

  36. Teja A.S., Rice P. (1981). Chem. Eng. Sci. 36:7

    Article  Google Scholar 

  37. Arikol M., Gürbüz H. (1992). Can. J. Chem. Eng. 70:1157

    Article  Google Scholar 

  38. Pedersen K.S., Fredenslund A. (1987). Chem. Eng. Sci. 42:182

    Article  Google Scholar 

  39. Teja A.S., Tardieu G. (1988). Can. J. Chem. Eng. 66:980

    Google Scholar 

  40. Plocker U., Knapp H., Prausnitz J. (1978). Ind. Eng. Chem. Proc. Des. Dev. 17:324

    Article  Google Scholar 

  41. Wong D.S.H., Sandler S.I., Teja A.S. (1983). Fluid Phase Equilib. 14:79

    Article  Google Scholar 

  42. Aziz R.A., Bowman D.H., Lim C.C. (1967). Can. J. Chem. 45:2079

    Article  Google Scholar 

  43. Sastri J.H. (1979). Curr Sci. 48:247

    Google Scholar 

  44. Srinivasan K. (1991). Acustica. 74:168

    Google Scholar 

  45. Erokhin N.F., Kompaniets V.I. (1980). High Temp. 18:872

    Google Scholar 

  46. Mikhailenko S.A., Blagoi Y.P. (1968). Russ. J. Phys. Chem. 42:566

    Google Scholar 

  47. Pole G.R., Aziz R.A. (1972). Can. J. Phys. 50:721

    ADS  Google Scholar 

  48. Hamann S.D. (1960). Austr. J. Chem. 13:325

    Article  Google Scholar 

  49. Kortbeek P.J., Schouten J.A. (1990). Int. J. Thermophys. 11:455

    Article  Google Scholar 

  50. Tsumura R., Straty G.C. (1977). Cryogenics 17:195

    Article  Google Scholar 

  51. Niepmann R. (1984). J. Chem. Thermodyn. 16:851

    Article  Google Scholar 

  52. Belinskii B.A., Ikramov S.K. (1972). Akust. Zh. 18:355

    Google Scholar 

  53. Houck J.C. (1974). J. Res. Nat. Bur. Stand. Section A – Phys. and Chem. A. 78:617

    Google Scholar 

  54. Lainez A., Zollweg J.A., Streett W.B. (1990). J. Chem. Thermodyn. 22:937

    Article  Google Scholar 

  55. Boelhouwer J.W.M. (1967). Physica 34:484

    Article  ADS  Google Scholar 

  56. Kagramanyan L.S., Badalyan A.L. (1978). Izv. Akad. Nauk. Arm. USSR Fiz. 13:478

    Google Scholar 

  57. Kiryakov B.S., Panin P.P. (1972). Nauch. Tr. Kursk. Gos. Ped. Inst. 7:132

    Google Scholar 

  58. Takagi T. (1978). Kagaku Kogaku Ronbunshu. 4:1

    Google Scholar 

  59. Takagi T., Teranishi H. (1985). Fluid Phase Equilib. 20:315

    Article  Google Scholar 

  60. Daridon J.L., Lagourette B., Grolier J.P.E. (1998). Int. J. Thermophys. 19:145

    Article  Google Scholar 

  61. Daridon J.L., Lagrabette A., Lagourette B. (1999). Phys. Chem. Liquids. 37:137

    Article  Google Scholar 

  62. Muringen M.J.P., Trappeniers N.J., Biswas S.N. (1985). Phys. Chem. Liquids 14:273

    Article  Google Scholar 

  63. Badalyan A.L., Otpushchennikov N.F., Shoitov U.S. (1970). Izv. Akad. Nauk. SSSR. Fiz. 5:448

    Google Scholar 

  64. Badalyan A.L., Otpushchennikov N.F. (1971). Izv. Akad. Nauk. Sssr. Fiz. 6:207

    Google Scholar 

  65. Daridon J.L., Lagourette B., Xans P. (1994). Fluid Phase Equilib. 100:269

    Article  Google Scholar 

  66. Daridon J.L. (1994). Acustica. 80:416

    Google Scholar 

  67. Ye S., Alliez J., Lagourette B., Saint-Guirons H., Arman J., Xans P. (1990). Revue de Physique Appliquée. 25:555

    Article  Google Scholar 

  68. Daridon J.L., Lagourette B. (2000). High Temp. – High Press. 32:83

    Article  Google Scholar 

  69. Daridon J.L., Carrier H., Lagourette B. (2002). Int. J. Thermophys. 23:697

    Article  Google Scholar 

  70. Dutour S., Daridon J.L., Lagourette B. (2000). Int. J. Thermophys. 21:173

    Article  Google Scholar 

  71. Dutour S., Daridon J.L., Lagourette B. (2001). High Temp. – High Press. 33:371

    Article  Google Scholar 

  72. Dutour S., Lagourette B., Daridon J.L. (2001). J. Chem. Thermodyn. 33:765

    Article  Google Scholar 

  73. Dutour S., Lagourette B., Daridon J.L. (2002). J. Chem. Thermodyn. 34:475

    Article  Google Scholar 

  74. Lagourette B., Daridon J.L. (1999). J. Chem. Thermodyn. 31:987

    Article  Google Scholar 

  75. Daridon J.L., Lagrabette A., Lagourette B. (1998). J. Chem. Thermodyn. 30:607

    Article  Google Scholar 

  76. Ambrose D., Tsonopoulos C. (1995). J. Chem. Eng. Data 40:531

    Article  Google Scholar 

  77. Tsonopoulos C. (1987). AIChE. J. 33:2080

    Article  Google Scholar 

  78. Magoulas K., Tassios D. (1990). Fuid Phase Equilib. 56:119

    Article  Google Scholar 

  79. Marano J., Holder G. (1997). Ind. Eng. Chem. Res. 36:1895

    Article  Google Scholar 

  80. Han B., Peng D. (1993). Can. J. Chem. Eng. 71:332

    Article  Google Scholar 

  81. Queimada A.J. (2004). Properties and Low Temperature Behavior of Hydrocarbon Mixtures. Aveiro University, Aveiro Portugal

    Google Scholar 

  82. Ye S.Y., Lagourette B., Alliez J., Saint-Guirons H., Xans P., Montel F. (1992). Fluid Phase Equilib. 74:177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Queimada.

Additional information

Paper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Queimada, A.J., Coutinho, J.A.P., Marrucho, I.M. et al. Corresponding-States Modeling of the Speed of Sound of Long-Chain Hydrocarbons. Int J Thermophys 27, 1095–1109 (2006). https://doi.org/10.1007/s10765-006-0105-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-006-0105-7

Keywords

Navigation