International Journal of Primatology

, Volume 37, Issue 6, pp 762–777 | Cite as

Occlusion in an Adult Male Gorilla with a Supernumerary Maxillary Premolar

Article

Abstract

Supernumerary teeth, or teeth that develop in addition to the normal number of deciduous and permanent dentition, have been widely described in human and nonhuman primates. Most studies have focused on the morphology and on the etiology of supernumerary teeth, and little is known about their occlusal relationships with adjacent and antagonistic teeth, and their effects on individuals’ masticatory efficiency. We analyzed the occlusal wear pattern of an adult male Western lowland gorilla (Gorilla gorilla gorilla) with a fully erupted extra maxillary right premolar. We used a virtual method, occlusal fingerprint analysis, to reconstruct the major mandibular occlusal pathways responsible for the creation of wear facets on the tooth crowns. This approach is based on analysis of facet parameters such as inclination, directions, and areas, all measured using high-resolution 3-D virtual models of dental crowns. The results show unusual wear patterns in the supernumerary premolar and on its antagonist contacts (lower P4 and M1) that cannot be associated with a normal masticatory behavior. Occlusal simulation and kinematic analyses reveal a high level of directional overlapping combined with the absence of common occlusal contacts. This indicates a case of malocclusion that must have caused discomfort in this gorilla when biting or chewing, and may represent the first evidence of bruxism (grinding the teeth and clenching the jaw) in wild great apes.

Keywords

Bruxism Living primates Malocclusion Mastication Wear facets 

Notes

Acknowledgements

We thank the curators Paulina Jenkins and Eileen Westwig of the American Museum of Natural History (New York, New York) that gave us access to the nonhuman primate collection. We also thank Dr. Iva Nikolic for copyediting this manuscript, the editor, and two anonymous reviewers for their comments that improved the quality of this manuscript. This study was supported by the Faculty of Medicine, Nursing and Health Sciences at Monash University through the Strategic Grant Scheme 2016 (Grant SGS16-0344), and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) and is publication no. 90 of the DFG Research Unit 771, “Function and performance enhancement in the mammalian dentition – phylogenetic and ontogenetic impact on the masticatory apparatus”.

Supplementary material

10764_2016_9937_Fig5_ESM.jpg (30 kb)
Fig. S1

The mastication compass (von Koenigswald et al. 2007) visualizes the reconstructed occlusal trajectory of the right dental rows in the Gorilla individual (AMNH 214107), derived from the virtual simulation with OFA software. Solid arrow describes the incursive phase I movement from distobuccal until centric occlusion (circle center) and the excursive phase II, dashed arrow toward slightly mesiolingual. Phase I and phase II show parallel direction and rather flat pathways, expressed through the length of the arrows. (JPG 29 kb)

10764_2016_9937_MOESM1_ESM.mpg (5.6 mb)
Video 1OFA software simulation of the individual’s power stroke tooth-to-tooth contacts showing the sequential antagonistic contacts in the right upper premolar–molar row. Color gradient from red to green presents actual and previous collisions in the occlusal stroke. (MPG 5694 kb)
10764_2016_9937_MOESM2_ESM.mpg (4.7 mb)
Video 2OFA software simulation of the individual’s power stroke tooth-to-tooth contacts showing the sequential antagonistic contacts in the right lower premolar–molar row. Color gradient from red to green presents actual and previous collisions in the occlusal stroke. (MPG 4818 kb)
10764_2016_9937_MOESM3_ESM.mpg (1.6 mb)
Video 3OFA software simulation of possible bruxism activity in the right premolar–molar row. (MPG 1618 kb)

References

  1. Ackermann, R. R., & Bishop, J. M. (2009). Morphological and molecular evidence reveals recent hybridization between gorilla taxa. Evolution, 64(1), 271–290.CrossRefPubMedGoogle Scholar
  2. Ahlberg, K., Jahkola, A., Savolainen, A., Könönen, M., Partinen, M., et al. (2008). Associations of reported bruxism with insomnia and insufficient sleep symptoms among media personnel with or without irregular shift work. Head & Face Medicine, 4, 4.CrossRefGoogle Scholar
  3. Anderson, D. M. C. (1983). The importance of thegosis. Journal of Craniomandibular Practice, 2, 21–22.Google Scholar
  4. Anthonappa, R. P., King, N. M., & Rabie, A. B. M. (2013). Aetiology of supernumerary teeth: a literature review. European Archives of Paediatric Dentistry, 14, 279–288.CrossRefPubMedGoogle Scholar
  5. Aromaa, M., Sillanpää, M. L., Rautava, P., & Helenius, H. (1998). Childhood headache at school entry: a controlled clinical study. Neurology, 50, 1729–1736.CrossRefPubMedGoogle Scholar
  6. Australian, C., & Levi, I. (1996). A psycho-odontologic investigation of patients with bruxism. Acta Odontologica Scandinavica, 24, 373–391.Google Scholar
  7. Batschelet, E. (1981). Circular statistics in biology. London: Academic.Google Scholar
  8. Bedi, S., & Sharma, A. (2009). Management of temporomandibular disorder associated with bruxism. Journal of Indian Society of Pedodontics and Preventive Dentistry, 27, 253–255.CrossRefPubMedGoogle Scholar
  9. Benazzi, S., Buti, L., Franzo, L., Kullmer, O., Winzen, O., & Gruppioni, G. (2010). Short report: report of three fused primary human teeth in an archaeological material. International Journal of Osteoarchaeology, 20, 481–485.Google Scholar
  10. Benazzi, S., Kullmer, O., Grosse, I. R., & Weber, G. W. (2011). Using occlusal wear information and finite element analysis to investigate stress distributions in human molars. Journal of Anatomy, 219, 259–272.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Benazzi, S., Kullmer, O., Grosse, I. R., & Weber, G. W. (2012). Brief communication: comparing loading scenarios in lower first molar supporting bone structure using 3D finite element analysis. American Journal of Physical Anthropology, 147, 128–134.CrossRefPubMedGoogle Scholar
  12. Benazzi, S., Kullmer, O., Schulz, D., Gruppioni, G., & Weber, G. W. (2013a). Technical note: individual tooth macrowear pattern guides the reconstruction of Sts 52 (Australopithecus africanus) dental arches. American Journal of Physical Anthropology, 150, 324–329.CrossRefPubMedGoogle Scholar
  13. Benazzi, S., Nguyen, H. N., Kullmer, O., & Hublin, J.-J. (2013b). Unravelling the functional biomechanics of dental features and tooth wear. PLoS ONE, 8, e69990.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Benazzi, S., Nguyen, H. N., Schulz, D., Grosse, I. R., Gruppioni, G., et al. (2013c). The evolutionary paradox of tooth wear: simply destruction or inevitable adaptation? PLoS ONE, 8, e62263.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Benazzi, S., Huynh, H. N., Kullmer, O., Hublin, J-J. (2015). Exploring the biomechanics of taurodontism. Journal of Anatomy 226, 180–188.Google Scholar
  16. Berkovitz, B. K. B., & Mulsgrave, J. H. (1971). A rare dental abnormality in an adult male orang-utan (Pongo pygmaeus): bilateral supernumerary maxillary premolars. Notes from the Mammalian Society, 22, 266–268.Google Scholar
  17. Bohn, A. (1963). Dental anomalies in harelip and cleft palate. Acta Odontologica Scandinavica, 21, 1–114.CrossRefGoogle Scholar
  18. Brook, A. H. (1974). Dental anomalies of number, form, and size: their prevalence in British schoolchildren. Journal of the International Association of Dentistry for Children, 5, 37–53.PubMedGoogle Scholar
  19. Bruning, L. J., Dunlop, L., & Mergele, M. E. (1957). A report of supernumerary teeth in Houston, Texas school children. Journal of Dentistry for Children, 24, 98–105.Google Scholar
  20. Cohen, D. W., & Goldman, H. M. (1960). Oral disease in primates. Annals of the New York Academy of Sciences, 85, 889–909.CrossRefPubMedGoogle Scholar
  21. Colyer, F. (1936). Variations and diseases of the teeth of animals. London: Bale & Danielsson.Google Scholar
  22. Crovella, S., & Ardito, G. (1994). Short communication: frequencies of oral pathologies in a sample of 767 non-human primates. Primates, 35, 225–230.CrossRefGoogle Scholar
  23. Di Biase, D. D. (1969). Midline supernumeraries and eruption of the maxillary central incisor. The Dental Practitioner and Dental Record, 20, 35–40.PubMedGoogle Scholar
  24. Duncan, B. R., Dohner, V. A., & Preist, J. H. (1968). Gardner’s syndrome: need for early diagnosis. Journal of Pediatrics, 72, 497.CrossRefPubMedGoogle Scholar
  25. Ebersole, J. L., Cappelli, D., Mathys, E. C., Steffen, M. J., Singer, R. E., et al. (2002). Periodontitis in humans and non-human primates: oral-systemic linkage inducing acute phase proteins. Annals of Periodontology, 7, 102–111.CrossRefPubMedGoogle Scholar
  26. Every, R. G. (1972). A new terminology for mammalian teeth: Founded on the phenomenon of thegosis, Parts 1 & 2. Christchurch: Pegasus.Google Scholar
  27. Every, R. G. (1975). Significance of tooth sharpness for mammalian, especially primate, evolution. In F. S. Szalay & S. Krager (Eds.), Approaches to primate paleobiology (Contributions to primatology, pp. 293–325). Basel: Karger.Google Scholar
  28. Fastlicht, S. (1943). Supernumerary teeth and malocclusion. American Journal of Orthodontics and Oral Surgery, 29, 623–637.CrossRefGoogle Scholar
  29. Fiorenza, L. (2015). Reconstructing diet and behaviour of Neanderthals from Central Italy through dental macrowear analysis. Journal of Anthropological Sciences, 93, 1–15.Google Scholar
  30. Fiorenza, L., & Kullmer, O. (2013). Dental wear and cultural behaviour in middle paleolithic humans from the near east. American Journal of Physical Anthropology, 152, 107–117.CrossRefPubMedGoogle Scholar
  31. Fiorenza, L., & Kullmer, O. (2015). Dental wear patterns in early modern humans from Skhul and Qafzeh: a response to Sarig and Tillier. Homo–Journal of Comparative Human Biology, 66, 414–419.CrossRefGoogle Scholar
  32. Fiorenza, L., Benazzi, S., & Kullmer, O. (2009). Morphology, wear and 3D digital surface models: material and techniques to create high-resolution replicas of teeth. Journal of Anthropological Sciences, 87, 211–218.PubMedGoogle Scholar
  33. Fiorenza, L., Benazzi, S., Tausch, J., Kullmer, O., & Schrenk, F. (2010). Brief communication: identification reassessment of the isolated tooth Krapina D58 through occlusal fingerprint analysis. American Journal of Physical Anthropology, 143, 306–312.CrossRefPubMedGoogle Scholar
  34. Fiorenza, L., Benazzi, S., Tausch, J., Kullmer, O., Bromage, T. G., & Schrenk, F. (2011a). Molar macrowear reveals Neanderthal eco-geographical dietary variation. PLoS ONE, 6(3), e14769.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Fiorenza, L., Benazzi, S., Bence, V., Kullmer, O., & Friedemanns, S. (2011b). Relationship between cusp size and occlusal wear pattern in Neanderthal and Homo sapiens first maxillary molar. Anatomical Record, 244, 453–461.CrossRefGoogle Scholar
  36. Fiorenza, L., Benazzi, S., & Kullmer, O. (2011c). Para-masticatory wear facets and their functional significance in hunter-gatherer maxillary molars. Journal of Archaeological Science, 38, 2182–2189.CrossRefGoogle Scholar
  37. Fiorenza, L., Benazzi, S., Moggi-Cecchi, J., Menter, C. G., & Kullmer, O. (2014). Dental macrowear analysis in great apes. American Journal of Physical Anthropology, 150(Supplemental S56), 123.Google Scholar
  38. Fiorenza, L., Benazzi, S., Henry, A., Salazar-García, D. C., Blasco, R., et al. (2015a). To meat or not to meat? New perspectives on Neanderthal ecology. Yearbook of Physical Anthropology, 156(Supplement S59), 43–71.CrossRefGoogle Scholar
  39. Fiorenza, L., Nguyen, H. N., & Benazzi, S. (2015b). Stress distribution and molar macrowear in Pongo pygmaeus: a new approach through finite element and occlusal fingerprint analyses. Human Evolution, 30, 215–226.Google Scholar
  40. Fisher, N. I. (1993). Statistical analysis of circular data. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  41. Galbany, J., Imanizabayo, O., Romero, A., Vecellio, V., Glowacka, H., et al. (2016). Tooth wear and feeding ecology in mountain gorillas from Volcanoes National Park, Rwanda. American Journal of Physical Anthropologists, 159, 457–465.CrossRefGoogle Scholar
  42. Garvey, M. T., Barry, H. J., & Blake, M. (1999). Supernumerary teeth: an overview of classification, diagnosis and management. Journal of the Canadian Dental Association, 65, 612–616.PubMedGoogle Scholar
  43. Ghafournia, M., & Tehrani, M. H. (2012). Relationship between bruxism and malocclusion among preschool children in Isfahan. Journal of Dental Research, Dental Clinics, Dental Prospects, 6, 138–142.PubMedPubMedCentralGoogle Scholar
  44. Gordon, K. D. (1984). Orientation of occlusal contacts in the chimpanzee, Pan troglodytes verus, deduced from scanning electron microscopy analysis of dental microwear patterns. Archives of Oral Biology, 29, 783–787.CrossRefPubMedGoogle Scholar
  45. Graf, H. (1969). Bruxism. Dental Clinics of North America, 13, 659.PubMedGoogle Scholar
  46. Hammer, Ø., Harpen, D. A. T., & Ryan, P. D. (2001). PAST: palaeontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 9.Google Scholar
  47. Harvati, K., Darlas, A., Bailey, S. E., Rein, T. R., El Zaatari, S., et al. (2013). New Neanderthal remains from Mani peninsula, S. Greece: the Kalamakia Middle Palaeolithic cave site. Journal of Human Evolution, 64, 486–499.CrossRefPubMedGoogle Scholar
  48. Hattab, F. N., Yassin, O. M., & Rawashdeh, M. A. (1994). Supernumerary teeth: report of three cases and review of the literature. ASDC Journal of Dentistry for Children, 61, 382–393.PubMedGoogle Scholar
  49. Janis, C. M. (1990). The correlation between diet and dental wear in herbivorous mammals, and its relationship to the determination of diets of extinct species. In A. J. Boucot (Ed.), Evolutionary paleobiology of behavior and coevolution (pp. 241–259). Amsterdam: Elsevier Science.Google Scholar
  50. Jungers, W. L., & Gingerich, P. D. (1980). Supernumerary molars in Anthropoidea, Adapidae and Archaeolemur: implications for primate dental homologies. American Journal of Physical Anthropology, 52, 1–5.CrossRefPubMedGoogle Scholar
  51. Kaidonis, J. A. (1995). An experimental study of the wear characteristics of human enamel during tooth grinding. Ph.D. thesis, The University of Adelaide.Google Scholar
  52. Kawashima, A., Nomura, Y., Aoyagi, Y., & Asada, Y. (2006). Hereditary may be one of the etiologies of supernumerary teeth. Pediatric Dental Journal, 16, 115–117.CrossRefGoogle Scholar
  53. Keith, A. (1899). On the chimpanzees and their relationship to the gorilla. Proceedings of the Zoological Society of London, 1899, 296–312.Google Scholar
  54. Kilgore, L. (1989). Dental pathologies in ten free-ranging chimpanzees from Gombe National Park, Tanzania. American Journal of Physical Anthropology, 139, 600–605.Google Scholar
  55. Klineberg, I. (1994). Bruxism: aetiology, clinical signs and symptoms. Australian Prosthodontic Journal/Australian Prosthodontic Society, 8, 9–17.Google Scholar
  56. Koenigswald, W. V., Smith, B. H., Arbor, A., Keller, T. (2007). Supernumerary teeth in a subadult rhino mandible (Stephanorhinus hundsheimensis) from the middle Pleistocene of Mosbach in Wiesbaden (Germany). Paläontologische Zeitschrift 81, 416–428.Google Scholar
  57. Korioth, T. W., Bohlig, K. G., & Andreson, G. C. (1998). Digital assessment of occlusal wear patterns on occlusal stabilization splints: a pilot study. Journal of Prosthetic Dentistry, 80, 209–213.CrossRefPubMedGoogle Scholar
  58. Kullmer, O., Benazzi, S., Fiorenza, L., Schulz, D., Basco, S., & Winzen, O. (2009). Technical note. Occlusal fingerprint analysis: quantification of tooth wear pattern. American Journal of Physical Anthropology, 80, 219–227.Google Scholar
  59. Kullmer, O., Benazzi, S., Schulz, D., Gunz, P., Kordos, L., & Begun, D. R. (2013). Dental arch restoration using tooth macrowear patterns with application to Rudapithecus hungaricus, from the late Miocene of Rudabanya, Hungary. Journal of Human Evolution, 64, 151–160.CrossRefPubMedGoogle Scholar
  60. Lavelle, C. L. B., & Moore, W. J. (1973). The incidence of agenesis and polygenesis in the primate dentition. American Journal of Physical Anthropology, 38, 671–680.CrossRefPubMedGoogle Scholar
  61. Lindqvist, B. (1974). Bruxism in twins. Acta Odontologica Scandinavica, 32, 177.CrossRefPubMedGoogle Scholar
  62. Lovell, N. C. (1990). Skeletal and dental pathology of free-ranging mountain gorillas. American Journal of Physical Anthropology, 81, 399–412.CrossRefPubMedGoogle Scholar
  63. Lovell, N. C. (1991). An evolutionary framework for assessing illness and injury in nonhuman primates. Yearbook of Physical Anthropology, 34, 117–155.CrossRefGoogle Scholar
  64. Macaluso, G. M., Guerra, P., Di Giovanni, G., Boselli, M., Parrino, L., & Terzano, M. G. (1998). Sleep bruxism is a disorder related to periodic arousals during sleep. Journal of Dental Research, 77, 565–573.CrossRefPubMedGoogle Scholar
  65. Maier, W., & Schneck, G. (1981). Konstruktionsmorphologische Untersuchungen am Gebiß der hominoiden Primaten. Zeitschrift für Morphologie und Anthropologie, 72, 127–169.PubMedGoogle Scholar
  66. Mardia, K. V., & Jupp, P. E. (2000). Directional statistics. Chichester: Wiley.Google Scholar
  67. Mehl, A., Gloger, W., Kunzelmann, K. H., & Hickel, R. (1997). A new optical 3-D device for the detection of wear. Journal of Dental Research, 76, 1799–1807.CrossRefPubMedGoogle Scholar
  68. Messer, J. G. (1972). Supernumerary molar teeth. A case report. British Dental Journal, 133, 261–262.CrossRefPubMedGoogle Scholar
  69. Mills, J. R. E. (1963). Occlusion and malocclusion of teeth of primates. In D. R. Brothwell (Ed.), Dental anthropology (pp. 29–54). New York: Macmillan.CrossRefGoogle Scholar
  70. Mossey, P. A. (1999). The hereditability of malocclusion: Part 2. The influence of genetics in malocclusion. British Journal of Orthodontics, 26, 195–203.CrossRefPubMedGoogle Scholar
  71. Murray, C. G., & Sanson, G. D. (1998). Thegosis: a critical review. Australian Dental Journal, 43, 192–198.CrossRefPubMedGoogle Scholar
  72. Nadler, S. C. (1960). Detection and recognition of bruxism. Journal of the American Dental Association, 61, 472–479.CrossRefPubMedGoogle Scholar
  73. Nasif, M. M., Ruffalo, R. C., & Zullo, T. (1983). Impacted supernumerary teeth: a survey of 50 cases. Journal of the American Dental Association, 106, 201–204.CrossRefGoogle Scholar
  74. Negoro, T., Briggs, J., Plesh, O., Nielsen, I., McNeill, C., & Miller, A. J. (1998). Bruxing patterns in children compared to intercuspal clenching and chewing as assessed with dental models, electromyography electromyography, and incisor jaw tracing: preliminary study. ASDC Journal of Dentistry for Children, 65, 449–458.PubMedGoogle Scholar
  75. Nilner, M. (1983). Relationship between oral parafunctions and functional disturbances in the stomatognathic system in 7 to 14 years olds. Acta Odontologica Scandinavica, 41, 167–172.CrossRefPubMedGoogle Scholar
  76. Oxilia, G., Peresan, M., Romandini, M., Matteucci, C., Spiteri, C., et al. (2015). Earliest evidence of dental treatment in the Late Upper Paleolithic. Scientific Reports, 5, 12150.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Posselt, U. (1971). The temporomandibular joint syndrome and occlusion. Journal of Prosthetic Dentistry, 25, 432–438.CrossRefPubMedGoogle Scholar
  78. Primosch, R. (1983). Anterior supernumerary teeth-assessment and surgical intervention in children. Pediatric Dentistry, 3, 204–215.Google Scholar
  79. Proff, P., Fanghänel, J., Allegrini, S., Jr., Bayerlein, T., & Gedrange, T. (2006). Problems of supernumerary teeth, hyperdontia or dentes supernumerarii. Annals of Anatomy, 188, 163–169.CrossRefPubMedGoogle Scholar
  80. Rajab, L. D., & Hamdan, M. A. M. (2002). Supernumerary teeth: review of the literature and a survey of 152 cases. International Journal of Paediatric Dentistry, 12, 244–254.CrossRefPubMedGoogle Scholar
  81. Ramfjord, S. P. (1961). Bruxism, a clinical and electromyographic study. Journal of the American Dental Association, 62, 21–44.CrossRefPubMedGoogle Scholar
  82. Randall, F. E. (1943). The skeletal and dental development and variability of the gorilla. Human Biology, 15, 307–337.Google Scholar
  83. Restrepo, C., Peláez, A., Alvarez, E., Paucar, C., & Abad, P. (2006). Digital imaging of patterns of dental wear to diagnose bruxism in children. International Journal of Paediatric Dentistry, 16, 278–285.CrossRefPubMedGoogle Scholar
  84. Richardson, A., & Deussen, F. F. (1994). Facial and dental anomalies in cleidocranial dysplasia: a study of 17 cases. International Journal of Paediatric Dentistry, 4, 225–231.CrossRefPubMedGoogle Scholar
  85. Robinson, P. T. (1979). A literature review of dental pathology and aging by dental means in nondomestic animals: Part I. Journal of Zoo Animal Medicine, 10, 57–65.CrossRefGoogle Scholar
  86. Sauther, M. L., Sussman, R. W., & Cuozzo, F. (2002). Dental and general health in a population of wild ring-tailed lemurs: a life history approach. American Journal of Physical Anthropology, 117, 122–132.CrossRefPubMedGoogle Scholar
  87. Scally, K. B. (1991). Bruxism: a worn out concept. Journal of Prosthetic Dentistry, 9, 183–185.Google Scholar
  88. Schultz, A. H. (1964). A gorilla with exceptionally large teeth and supernumerary premolars. Folia Primatologica, 2, 149–160.CrossRefGoogle Scholar
  89. Schwartz, J. H. (1984). Supernumerary teeth in anthropoid primates and models of tooth development. Archives of Oral Biology, 29, 833–842.CrossRefPubMedGoogle Scholar
  90. Sedano, H. O., & Gorlin, R. (1969). Familial occurrence of mesiodens. Oral Surgery, Oral Medicine, and Oral Pathology, 27, 360–362.CrossRefPubMedGoogle Scholar
  91. Shaw, J. C. M. (1927). Four cases of fourth molar teeth in South African baboons. Journal of Anatomy, 62, 79–85.PubMedPubMedCentralGoogle Scholar
  92. Stoner, K. E. (1995). Dental pathology in Pongo satyrus borneensis. American Journal of Physical Anthropology, 98, 307–321.CrossRefPubMedGoogle Scholar
  93. Tehrani, M. H., Pestechian, N., Yousefi, H., Sekhavati, H., & Attarzadeh, H. (2010). The correlation between intestinal parasitic infections and bruxism among 3–6–year-old children in Isfahan. Dental Research Journal, 7, 51–55.PubMedPubMedCentralGoogle Scholar
  94. Tougard, C., & Ducrocq, S. (1999). Abnormal fossil upper molar of Pongo from Thailand: Quaternary climatic changes in Southeast Asia as a possible cause. International Journal of Primatology, 20, 599–607.CrossRefGoogle Scholar
  95. Ulhaas, L., Kullmer, O., Schrenk, F., & Henke, W. (2004). A new 3-d approach to determine functional morphology of cercopithecoid molars. Annals of Anatomy, 186, 487–493.CrossRefPubMedGoogle Scholar
  96. Ulhaas, L., Kullmer, O., & Schrenk, F. (2007). Tooth wear diversity in early hominid molars: A case study. In S. E. Bailey & J.-J. Hublin (Eds.), Dental perspectives on human evolution: State of the art research in dental paleoanthropology (pp. 369–390). Dordrecht: Springer.CrossRefGoogle Scholar
  97. Varela, M., Arrieta, P., & Ventureira, C. (2009). Non-syndromic concomitant hypodontia and supernumerary teeth in an orthodontic population. European Journal of Orthodontics, 31, 632–637.CrossRefPubMedGoogle Scholar
  98. von Koenigswald, W., Holly Smith, B., Arbor, A., & Keller, T. (2007). Supernumerary teeth in a subadult rhino mandible (Stephanorhinus hundsheimensis) from the middle Pleistocene of Mosbach in Wiesbaden (Germany). Paläontologische Zeitschrift, 81(4), 416–428.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Anatomy and Developmental BiologyMonash UniversityMelboruneAustralia
  2. 2.Earth SciencesUniversity of New EnglandArmidaleAustralia
  3. 3.Senckenberg Research InstituteFrankfurt am MainGermany
  4. 4.Department of Paleobiology and Environment, Institute of Ecology, Evolution, and DiversityJohann Wolfgang Goethe UniversityFrankfurtGermany

Personalised recommendations