Skip to main content

Advertisement

Log in

Neutral Theory Overestimates Extinction Times in Nonhuman Primates

  • Published:
International Journal of Primatology Aims and scope Submit manuscript

Abstract

The unified neutral theory of biodiversity states that random processes and stochastic events drive species abundance and turnover and that each lineage has an equal probability of speciation. Predictions based on this model have been tested only a few times using evolutionary rates. We used an individual-based approach to estimate the waiting times to extinction (the time between one extinction event and the next) and compare those with the neutral model. We calculated the speciation and extinction rates for all subfamilies in the primate order using a time-calibrated phylogeny and compared the estimates against those predicted by the neutral theory using taxon area distribution and population densities. In most cases, the extinction time obtained from the neutral theory exceeded that estimated using phylogenetic data by several orders of magnitude. Our main result indicates that drift is too slow to fully explain evolutionary rates of turnover in primates, suggesting that other factors besides chance may influence primate diversification rates. Although estimates of forest cover, taxon area distribution, and species densities may influence the results, the observed differences do not support the predictions of neutral theory and question the model as a reference for conservation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arnold, C., Matthews, L. J., & Nunn, C. L. (2010). The 10kTrees website: A new online resource for primate phylogeny. Evolutionary Anthropology, 19, 114–118.

    Article  Google Scholar 

  • Baker, T. R., Pennington, R. T., Magallon, S., et al. (2014). Fast demographic traits promote high diversification rates of Amazonian trees. Ecology Letters, 17(5), 527–536. doi:10.1111/ele.12252.

  • Bickford, D., Lohman, D. J., Sodhi, N. S., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148–155.

    Article  Google Scholar 

  • Bininda-Emonds, O. R., Cardillo, M., Jones, K. E., et al. (2007). The delayed rise of present-day mammals. Nature, 446, 507–512.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, C. J. (2011). Primates in perspective. New York: Oxford University Press.

    Google Scholar 

  • Davies, T. J., Allen, A. P., Borda-de-Água, L., Regetz, J., & Melián, C. J. (2011). Neutral biodiversity theory can explain the imbalance of phylogenetic trees but not the tempo of their diversification. Evolution, 65(7), 1841–1850.

    Article  PubMed  Google Scholar 

  • Defler, T. R., & Bueno, M. L. (2007). Aotus diversity and the species problem. Primate Conservation, 22, 55–70.

    Article  Google Scholar 

  • Drummond, A. J., Rambaut, A., Shapiro, B., & Pybus, O. G. (2005). Bayesian coalescent inference of past population dynamics from molecular sequences. Molecular Biology and Evolution, 22, 1185–1192.

    Article  CAS  PubMed  Google Scholar 

  • Eiserhardt, W. L., Svenning, J.-C., Baker, W. J., Couvreur, T. L., & Balslev, H. (2013). Dispersal and niche evolution jointly shape the geographic turnover of phylogenetic clades across continents. Scientific Reports, 3. doi:10.1038/srep01164.

  • Etienne, R. S., & Apol, M. E. F. (2008). Estimating speciation and extinction rates from diversity data and the fossil record. Evolution, 63, 244–255.

    Article  PubMed  Google Scholar 

  • Fabre, P., Rodrigues, A., & Douzery, E. (2009). Patterns of macroevolution among Primates inferred from a supermatrix of mitochondrial and nuclear DNA. Molecular Phylogenetics and Evolution, 53, 808.

    Article  CAS  PubMed  Google Scholar 

  • Fargione, J., Brown, C. S., & Tilman, D. (2003). Community assembly and invasion: An experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences of the USA, 100, 8916–8920.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Finstermeier, K., Zinner, D., Brameier, M., Meyer, M., Kreuz, E., Hofreiter, M., & Roos, C. (2013). A mitogenomic phylogeny of living primates. PLoS ONE, 8(7), e69504.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • FitzJohn, R. G. (2012). Diversitree: Comparative phylogenetic analyses of diversification in R. Methods in Ecology and Evolution, 3, 1084–1092.

    Article  Google Scholar 

  • Freckleton, R., Harvey, P., & Pagel, M. (2002). Phylogenetic analysis and comparative data: A test and review of evidence. The American Naturalist, 160, 712–726.

    Article  CAS  PubMed  Google Scholar 

  • Gillespie, J. H. (2010). Population genetics: A concise guide. Baltimore: Johns Hopkins University Press.

    Google Scholar 

  • Gómez, J. M., & Verdú, M. (2012). Mutualism with plants drives primate diversification. Systematic Biology, 61, 567–577.

    Article  PubMed  Google Scholar 

  • Hayes, B. J., Visscher, P. M., McPartlan, H. C., & Goddard, M. E. (2003). Novel multilocus measure of linkage disequilibrium to estimate past effective population size. Genome Research, 13, 635–643.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hubbell, S. (2001). The unified neutral theory of biodiversity and biogeography. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Jabot, F., & Chave, J. (2009). Inferring the parameters of the neutral theory of biodiversity using phylogenetic information and implications for tropical forests. Ecology Letters, 12, 239–248.

    Article  PubMed  Google Scholar 

  • Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491(7424), 444–448.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, D. (2012). Primate info net. In The life spans of nonhuman primates. Available at: http://pin.primate.wisc.edu/aboutp/phys/lifespan.html.

  • Karst, J., Gilbert, B., & Lechowicz, M. J. (2005). Fern community assembly: The roles of chance and the environment at local and intermediate scales. Ecology, 86, 2473–2486.

    Article  Google Scholar 

  • Kimura, M. (1985). The neutral theory of molecular evolution. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Leigh, G. (1981). The average lifetime of a population in a varying environment. Journal of Theoretical Biology, 90, 213–239.

    Article  PubMed  Google Scholar 

  • MacArthur, R. (1970). Species packing and competitive equilibrium for many species. Theoretical Population Biology, 1, 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Magnuson-Ford, K., & Otto, S. P. (2012). Linking the investigations of character evolution and species diversification. The American Naturalist, 180, 225–245.

    Article  PubMed  Google Scholar 

  • Maia, R., Rubenstein, D. R., & Shawkey, M. D. (2013). Key ornamental innovations facilitate diversification in an avian radiation. Proceedings of the National Academy of Sciences, 110(26), 10687–10692. doi:10.1073/pnas.1220784110.

  • Nee, S. (2001). Inferring speciation rates from phylogenies. Evolution, 55, 661–668.

    Article  CAS  PubMed  Google Scholar 

  • Nee, S. (2005). The neutral theory of biodiversity: do the numbers add up? Functional Ecology, 19(1), 173–176. doi:10.1111/j.0269-8463.2005.00922.x.

  • Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401, 877–884.

    Article  CAS  PubMed  Google Scholar 

  • Paradis, E. (2011). Analysis of phylogenetics and evolution with R. New York: Springer Science+Business Media.

    Google Scholar 

  • Perelman, P., Johnson, W. E., Roos, C., et al. (2011). A molecular phylogeny of living primates. PLoS Genetics, 7, e1001342.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pozzi, L., Hodgson, J. A., Burrell, A. S., Sterner, K. N., Raaum, R. L., & Disotell, T. R. (2014). Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Molecular Phylogenetics and Evolution, 75, 165–183.

    Article  PubMed Central  PubMed  Google Scholar 

  • R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Rabosky, D. L. (2010). Extinction rates should not be estimated from molecular phylogenies. Evolution, 64, 1816–1824.

    Article  PubMed  Google Scholar 

  • Rabosky, D. L., Slater, G. J., & Alfaro, M. E. (2012). Clade age and species richness are decoupled across the eukaryotic tree of life. PLoS Biology, 10, e1001381.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Revell, L. J., Harmon, L. J., & Collar, D. C. (2008). Phylogenetic signal, evolutionary process, and rate. Systematic Biology, 57, 591–601.

    Article  PubMed  Google Scholar 

  • Ricklefs, R. E. (2006). The unified neutral theory of biodiversity: Do the numbers add up? Ecology, 87, 1424–1431.

    Article  PubMed  Google Scholar 

  • Ricklefs, R. E. (2007). Estimating diversification rates from phylogenetic information. Trends in Ecology & Evolution, 22, 601–610.

    Article  Google Scholar 

  • Ricklefs, R. E., & Renner, S. S. (2012). Global correlations in tropical tree species richness and abundance reject neutrality. Science, 335, 464–467.

    Article  CAS  PubMed  Google Scholar 

  • Rosindell, J., Hubbell, S. P., & Etienne, R. S. (2011). The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology & Evolution, 26, 340–348.

    Article  Google Scholar 

  • Rowe, N., & Myers, M. (2011). All the world’s primates. Available at: www.alltheworldsprimates.org (Accessed November 3, 2011).

  • Sanderson, M. J., & Donoghue, M. J. (1996). Reconstructing shifts in diversification rates on phylogenetic trees. Trends in Ecology & Evolution, 11, 15–20.

    Article  CAS  Google Scholar 

  • Shultz, S., Opie, C., & Atkinson, Q. D. (2011). Stepwise evolution of stable sociality in primates. Nature, 479, 219–222.

    Article  CAS  PubMed  Google Scholar 

  • Siepielski, A. M., Hung, K.-L., Bein, E. E. B., & McPeek, M. A. (2010). Experimental evidence for neutral community dynamics governing an insect assemblage. Ecology, 91, 847–857.

    Article  PubMed  Google Scholar 

  • Smuts, B. B., Cheney, D. L., Seyfarth, R. M., et al. (1987). Primate societies. Chicago: University of Chicago Press.

    Google Scholar 

  • Springer, M. S., Meredith, R. W., Gatesy, J., et al. (2012). Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species Supermatrix. PLoS ONE, 7, e49521.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stadler, T. (2011a). Mammalian phylogeny reveals recent diversification rate shifts. Proceedings of the National Academy of Sciences of the USA, 108, 6187–6192.

  • Stadler, T. (2011b). Simulating trees with a fixed number of extant species. Systematic Biology, 60(5), 676–684.

  • Stanley Harpole, W., & Tilman, D. (2006). Non-neutral patterns of species abundance in grassland communities. Ecology Letters, 9, 15–23.

    CAS  PubMed  Google Scholar 

  • Stevenson, P. R. (2001). The relationship between fruit production and primate abundance in Neotropical communities. Biological Journal of the Linnean Society, 72, 161–178. doi:10.1111/j.1095-8312.2001.tb01307.x.

    Article  Google Scholar 

  • Stevenson, P. R. (2010). Efectos de la fragmentación y de la producción de frutos en comunidades de primates neotropicales. Pereira-Bengoa, V., Stevenson, P. R., Bueno, M. & Nassar-Montoya, F. (Eds.), Avances en la primatología del nuevo mundo (pp. 239–257). Bogotá D.C.

  • Volkov, I., Banavar, J. R., He, F., Hubbell, S. P., & Maritan, A. (2005). Density dependence explains tree species abundance and diversity in tropical forests. Nature, 438(7068), 658–661.

    Article  CAS  PubMed  Google Scholar 

  • Weiher, E., & Keddy, P. (2001). Ecological assembly rules: Perspectives, advances, retreats. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Weir, J. T. (2006). Divergent timing and patterns of species accumulation in lowland and highland Neotropical birds. Evolution, 60, 842–855.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Sebastian Gonzalez Caro for his valuable comments and suggestions. We also thank Diana Pizano, Diana Guzmán, and Ana Aldana for their comments and corrections. An anonymous reviewer from Peerage of Science made helpful comments to the first version of this manuscript, and three anonymous referees and Dr. Joanna Setchell made insightful comments and constructive suggestions for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Henao-Diaz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henao-Diaz, F., Stevenson, P.R. Neutral Theory Overestimates Extinction Times in Nonhuman Primates. Int J Primatol 36, 790–801 (2015). https://doi.org/10.1007/s10764-015-9854-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10764-015-9854-0

Keywords

Navigation