Andrà, C., Magnano, G., & Morselli, F. (2011). Drop-out undergraduate students in mathematics: An exploratory study. In B. Roesken & M. Casper (Eds.), Current State of Research on Mathematical Beliefs XVII. Proceedings of the MAVI-17 Conference September 17-20, 2011 (pp. 13–22). Bochum, Germany: Professional School of Education, Ruhr University Bochum.
Google Scholar
Baars, G. J. A., & Arnold, I. J. M. (2014). Early identification and characterization of students who drop out in the first year at university. Journal of College Student Retention: Research, Theory & Practice, 16(1), 95–109.
Google Scholar
Baumert, J., Bos, W., Brockmann, J., Gruehn, S., Klieme, E., Köller, O., . . . Watermann, R. (2000). TIMSS/III–Deutschland. Der Abschlussbericht. Zusammenfassung ausgewählter Ergebnisse der Dritten Internationalen Mathematik-und Naturwissenschaftsstudie zur mathematischen und naturwissenschaftlichen Bildung am Ende der Schullaufbahn [TIMSS/III – Germany. The final report. Summary of selected results of the third international mathematics and science study concerning the mathematics and science education at the end of schooling.] Berlin. http://www.landeselternrat-sachsen.de/fileadmin/ler/daten/07gesetz/02studien/0011.TIMSSIII-Broschuere.pdf. Accessed 17 Jul 2018.
Bengmark, S., Thunberg, H., & Winberg, T. M. (2017). Success-factors in transition to university mathematics. International Journal of Mathematical Education in Science and Technology, 48(7), 988–1001.
Google Scholar
Biehler, R., Lankeit, E., Neuhaus, S., Hochmuth, R., Kuklinski, C., Leis, E., . . . Schürmann, M. (2018). Different goals for pre-university mathematical bridging courses-Comparative evaluations, instruments and selected results. In V. Durand-Guerrier, R. Hochmuth, S. Goodchild, & N. M. Hogstad (Eds.), Proceedings of the Second Conference of the International Network for Didactic Research in University Mathematics (pp. 467–476). Kristiansand, Norway: University of Agder and INDRUM.
Google Scholar
Blömeke, S. (2009). Ausbildungs- und Berufserfolg im Lehramtsstudium im Vergleich zum Diplom-Studium – Zur prognostischen Validität kognitiver und psycho-motivationaler Auswahlkriterien [Vocational and career success in teacher education programmes in comparison to diploma programs]. Zeitschrift für Erziehungswissenschaft, 12(1), 82–110.
Google Scholar
Burton, N. W., & Ramist, L. (2001). Predicting success in college: SAT studies of classes graduating since 1980. The college board research report, 2001–2002. New York, NY: College entrance Examination Board.
Google Scholar
Chen, X. (2013). STEM attrition: College students’ paths into and out of STEM fields. Washington, DC: National Centre for Education Statistics, U.S. Department of Education. Retrieved Mar. 1, 2018 from https://nces.ed.gov/pubs2014/2014001rev.pdf. Accessed 1 Mar 2018.
Clark, M., & Lovric, M. (2008). Suggestion for a theoretical model for secondary-tertiary transition in mathematics. Mathematics Education Research Journal, 20(2), 25–37.
Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioural sciences. Hoboken, NJ: Taylor and Francis.
Google Scholar
Crawford, K., Gordon, S., Nicholas, J., & Prosser, M. (1994). Conceptions of mathematics and how it is learned: The perspectives of students entering university. Learning and Instruction, 4, 331–345.
Google Scholar
Daskalogianni, K., & Simpson, A (2001). Beliefs overhang: The transition from school to university. In J. Winter (Ed.), Proceedings of the British Congress of Mathematics Education (In Collaboration with the British Society for Research into Learning Mathematics) (Vol. 21, pp. 97–108).
Daskalogianni, K., & Simpson, A. (2002). “Cooling-off”: The phenomenon of a problematic transition from school to university. In I. Vakalis (Ed.), Proceedings of the 2nd International Conference on the Teaching of Mathematics (at the Undergraduate Level) (pp. 103–110). Crete, Greece: J. Wiley.
Di Martino, P., & Gregorio, F. (2019). The mathematical crisis in secondary-tertiary transition. International Journal of Science and Mathematics Education, 17(4), 825–843.
Google Scholar
Dieter, M., & Törner, G. (2012). Vier von fünf geben auf [Four out of five are giving up]. Forschung und Lehre, 19(10), 826–827.
Google Scholar
Engelbrecht, J. (2010). Adding structure to the transition process to advanced mathematical activity. International Journal of Mathematical Education in Science and Technology, 41(2), 143–154.
Google Scholar
Geisler, S., & Rolka, K. (2018). Affective variables in the transition from school to university mathematics. In V. Durand-Guerrier, R. Hochmuth, S. Goodchild & N.M Hogstad (Eds.), Proceedings of the Second Conference of the International Network for Didactic Research in University Mathematics (pp. 507–516). Kristiansand, Norway: University of Agder and INDRUM.
Grigutsch, S., & Törner, G. (1998). World views of mathematics held by university teachers of mathematics science. Retrieved Feb. 21, 2018 from http://duepublico.uni-duisburg-essen.de/servlets/DerivateServlet/Derivate-5249/mathe121998.pdf. Accessed 21 Feb 2018.
Gueudet, G. (2008). Investigating the secondary–tertiary transition. Educational Studies in Mathematics, 67, 237–254.
Google Scholar
Haak, I. (2017). Maßnahmen zur Unterstützung kognitiver und metakognitiver Prozesse in der Studieneingangsphase [Measures to support cognitive and metacognitive processes in the university entrance phase]. Berlin, Germany: Logos.
Google Scholar
Halverscheid, S., & Pustelnik, K. (2013). Studying Math at the university: Is dropout predictable? In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 417–424). Kiel, Germany: PME.
Google Scholar
Hannula, M. S. (2012). Exploring new dimensions of mathematics-related affect: Embodied and social theories. Research in Mathematics Education, 14(2), 137–161.
Google Scholar
Hefendehl-Hebeker, L. (2017). Why linear algebra is difficult for many beginners. In R. Göller, R. Biehler, R. Hochmuth, & H.-G. Rück (Eds.), Didactics of mathematics in higher education as a scientific discipline–Conference proceedings (pp. 204–205). Kassel, Germany: Universitätsbibliothek Kassel.
Google Scholar
Hernandez-Martinez, P. (2016). Lost in transition: Alienation and drop out during the transition to mathematically-demanding subjects at university. International Journal of Educational Research, 79, 231–239.
Google Scholar
Hersh, R. (1991). Mathematics has a front and a back. Synthese, 88(2), 127–133.
Google Scholar
Hirst, K., Meacock, S., & Ralha, E (2004). Student expectations of studying mathematics at university. In I. Putt, R. Faragher, & M. McLean (Eds.), Proceedings of the 27th Annual Conference of the Mathematics Education Research Group of Australasia (MERGA27) (Vol. 1, pp. 295–302). Townsville, Queensland, Australia.
KMK. (2012). Bildungsstandard im Fach Mathematik für die Allgemeine Hochschulreife [Standards in mathematics].https://www.kmk.org/fileadmin/Dateien/veroeffentlichungen_beschluesse/2012/2012_10_18-Bildungsstandards-Mathe-Abi.pdf. Accessed 9 Mar 2020.
Kolter, J., Liebendörfer, M., & Schukajlow, S. (2016). Mathe – nein danke? Interesse, Beliefs und Lernstrategien im Mathematikstudium bei Grundschullehramtsstudierenden mit Pflichtfach [Math – no thanks? Interest, beliefs and learning strategies of elementary pre-service teachers]. In A. Hoppenbrock, R. Biehler, R. Hochmuth, & H.-G. Rück (Eds.), Lehren und Lernen von Mathematik in der Studieneingangsphase Konzepte und Studien zur Hochschuldidaktik und Lehrerbildung Mathematik (pp. 567–583). Wiesbaden, Germany: Springer.
Google Scholar
Kuklinski, C., Leis, E., Liebendörfer, M., Hochmuth, R., Biehler, R., Lankeit, E., . . . Schürmann, M. (2018). Evaluating innovative measures in university mathematics-The case of affective outcomes in a lecture focused on problem-solving. In V. Durand-Guerrier, R. Hochmuth, S. Goodchild, & N. M. Hogstad (Eds.), Proceedings of the Second Conference of the International Network for Didactic Research in University Mathematics (pp. 527–536). Kristiansand, Norway: University of Agder and INDRUM.
Google Scholar
Lai, Y., & Weber, K. (2014). Factors mathematicians profess to consider when presenting pedagogical proofs. Educational Studies in Mathematics, 85(1), 93–108.
Google Scholar
Laschke, C., & Blömeke, S. (2013). Teacher education and development study: Learning to teach mathematics (TEDS–M). Dokumentation der Erhebungsinstrumente. Münster, Germany: Waxmann.
Google Scholar
Liljedahl, P., Rolka, K., & Rösken, B. (2007). Affecting affect: The reeducation of preservice teachers’ beliefs about mathematics and mathematics learning and teaching. In M. Strutchens & W. Martin (Eds.), The learning of mathematics – 69th NCTM yearbook (pp. 319–330). Reston, VA: NCTM.
Liebendörfer, M., & Hochmuth, R. (2013). Interest in mathematics and the first steps at the university. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the 8th Conference of the European Society for Research in Mathematics Education (pp. 2386–2395). Ankara, Turkey: Middle East Technical University.
Liebendörfer, M., & Ostsieker, L. (2014). Mathematik als Werkzeug: Sicht- und Arbeitsweisen von Studierenden am Anfang ihres Mathematikstudiums [Mathematics as tool: Students’ views and working habits]. In T. Wassong, D. Frischemeier, P. R. Fischer, R. Hochmuth, & P. Bender (Eds.), Mit Werkzeugen Mathematik und Stochastik lernen – Using Tools for Learning Mathematics and Statistics (pp. 453–462). Wiesbaden, Germany: Springer.
Google Scholar
Liebendörfer, M., & Schukajlow, S. (2017). Interest development during the first year at university: Do mathematical beliefs predict interest in mathematics? ZDM Mathematics Education, 49(3), 355–366.
Google Scholar
Liljedahl, P. (2018). Affect as a system: The case of Sara. In B. Rott, G. Törner, J. Peters-Dasdemir, A. Möller, & Safrudiannur (Eds.), Views and beliefs in mathematics education (pp. 21–32). Berlin, Germany: Springer.
Google Scholar
Liljedahl, P. G. (2005). Mathematical discovery and affect: The effect of AHA! Experiences on undergraduate mathematics students. International Journal of Mathematical Education in Science and Technology, 36(3), 219–234.
Google Scholar
Liston, M., & O’Dnoghue, J. (2009). Factors influencing the transition to university service mathematics: Part 1 a quantitative study. Teaching Mathematics and Its Applications, 28(2), 77–87.
Google Scholar
Lubinski, D., & Benbow, C. (2000). States of excellence. American Psychologist, 55(1), 137–150.
Google Scholar
Manderfeld, K., & Siller, H.-S. (2018). Evaluation of an approach of professional role reflection in mathematics education. In B. Rott, G. Törner, J. Peters-Dasdemir, A. Möller, & Safrudiannur (Eds.), Views and beliefs in mathematics education (pp. 103–113). Berlin, Germany: Springer.
Google Scholar
McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. A. Grouws (Ed.), Handbook of research on mathematics learning and teaching (pp. 575–596). New York, NY: Macmillan.
Google Scholar
Nagy, G (2006). Berufliche Interessen, kognitive und fachgebundene Kompetenzen: Ihre Bedeutung für die Studienfachwahl und die Bewährung im Studium [Career interest, cognitive and subject specific competences: On their relevance for course choices and study success] (Doctoral dissertation). Freie Universität Berlin, Germany.https://refubium.fu-berlin.de/handle/fub188/10012. Accessed 9 Mar 2020.
Organization for Economic Cooperation and Development. (2016). “PISA 2015 mathematics framework”. In PISA 2015 assessment and analytical framework: Science, reading, mathematic and financial literacy. Paris, France: OECD Publishing.
Pajares, M. F. (1992). Teachers’ beliefs and educational research: Cleaning up a messy construct. Review of Educational Research, 62(3), 307–332.
Google Scholar
Pehkonen, E., & Pietilä, A. (2003). On relationships between beliefs and knowledge in mathematics education. In M. A. Mariotti (Ed.), European Research in Mathematics Education III: Proceedings of the Third Conference of the European Society for Research in Mathematics Education. Bellaria, Italy: University of Pisa and ERME. https://www.mathematik.uni-dortmund.de/~erme/CERME3/Groups/TG2/TG2_pehkonen_cerme3.pdf. Accessed 9 Mar 2020.
Pehkonen, E., & Törner, G. (1996). Mathematical beliefs and their meaning for the teaching and learning of mathematics. ZDM, 28(4), 101–108.
Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 257–315). Charlotte, NC: Information Age.
Google Scholar
Pólya, G. (1957). How to solve it: A new aspect of mathematical method. Garden City: Doubleday.
Google Scholar
Rach, S., & Heinze, A. (2017). The transition from school to university in mathematics: Which influence do school-related variables have? International Journal of Science and Mathematics Education., 15(7), 1343–1363.
Google Scholar
Rach, S., Siebert, U., & Heinze, A. (2016). Operationalisierung und empirische Erprobung von Qualitätskriterien für mathematische Lehrveranstaltungen in der Studieneingangsphase [Development and testing of quality criteria for mathematics lectures]. In A. Hoppenbrock, R. Biehler, R. Hochmuth, & H.-G. Rück (Eds.), Lehren und Lernen von Mathematik in der Studieneingangsphase Konzepte und Studien zur Hochschuldidaktik und Lehrerbildung Mathematik (pp. 567–583). Wiesbaden, Germany: Springer.
Google Scholar
Schiefele, U., Streblow, L., & Brinkmann, J. (2007). Aussteigen oder Durchhalten was unterscheidet Studienabbrecher von anderen Studierenden? [Drop-out or persist. What differentiates students that drop-out from other students?]. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 39(3), 127–140.
Google Scholar
Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando, FL: Academic Press.
Google Scholar
Stylianou, D. A., Blanton, M. L., & Rotou, O. (2015). Undergraduate students’ understanding of proof: Relationships between proof conceptions, beliefs, and classroom experiences with learning proof. International Journal of Research in Undergraduate Mathematics Education, 1(1), 91–134.
Google Scholar
Swanson, J. L., & Fouad, N. A. (1999). Applying theories of person-environment fit to the transition from school to work. The Career Development Quarterly Jun, 47(June), 337–347.
Google Scholar
Tall, D. (1992). The transition to advanced mathematical thinking: Functions, limits, infinity and proof. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 495–511). New York, NY: Macmillan.
Google Scholar
Tall, D. (2008). The transition to formal thinking in mathematics. Mathematics Education Research Journal, 20(2), 5–24.
Google Scholar
Törner, G., & Grigutsch, S. (1994). “Mathematische Weltbilder” bei Studienanfängern - eine Erhebung [“Mathematical worldviews” of freshmen]. JMD, 15(3–4), 211–251.
Google Scholar
Vollstedt, M., Heinze, A., Gojdka, K., & Rach, S. (2014). Framework for examining the transformation of mathematics and mathematics learning in the transition from school to university. In S. Rezat, M. Hattermann, & A. Peter-Koop (Eds.), Transformation: A fundamental idea of mathematics education (pp. 29–50). New York, NY: Springer.
Google Scholar
Weber, K., Fukawa-Connelly, T., & Meija-Ramos, J. P. (2017). How lectures in advanced mathematics can be ineffective: Focusing on students’ interpretations of the lecture. In R. Göller, R. Biehler, R. Hochmuth, & H.-G. Rück (Eds.), Didactics of mathematics in higher education as a scientific discipline–Conference proceedings (pp. 249–253). Kassel, Germany: Universitätsbibliothek Kassel.
Google Scholar
Witzke, I. (2015). Different understandings of mathematics. An epistemological approach to bridge the gap between school and university mathematics. In E. Barbin, U. T. Jankvist, & T. H. Kjeldsen (Eds.), ESU7 (pp. 304–322). Copenhagen, Denmark: Danish School of Education.
Google Scholar