Skip to main content
Log in

Understanding the Idea of Chemical Elements and Their Periodic Classification in Spanish Students Aged 16–18 Years

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

The work reported here involved a comparative study regarding the understanding that high school students (16–18 years) have of the concept of chemical elements and their periodic classification. More specifically, the level of knowledge on this topic was compared before and after the completion of baccalaureate studies in a sample of Spanish students. In order to achieve this goal, a questionnaire was developed that included 14 items in an open format, through which various aspects of the students’ understanding of the idea of chemical element and their periodic classification were assessed. In addition, the application of this knowledge to interpret and predict the behaviour and properties of elements and to carry out calculations on the atomic composition of the elements was evaluated. Aspects concerning the acquisition of scientific knowledge, the application of knowledge to different contexts and situations, and the use of scientific evidence to draw conclusions and knowledge about the nature and history of science were evaluated. The questionnaire was previously validated with a large group of students. The results of this study show that improvements occur primarily in addressing higher level cognitive questions (analysis, synthesis and evaluation) in comparison to the lower level tasks (capacity for retention, understanding or direct application of learning). In addition, students who start high school have a very limited understanding of the ideas behind the Periodic Table of the chemical elements and that their lack of understanding, to a large extent, remains upon completion of the baccalaureate. These results suggest that there are real difficulties in understanding this topic and show the limited influence of the studies completed in high school.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Equivalent to 4th Form or Year 10 (General Certificate of Secondary Education) in the UK.

  2. Equivalent to Upper 6th Form or Year 13 in the UK.

References

  • Agudelo, C., Marzábal, A. & Izquierdo, M. (2009). Distintas narrativas para un mismo contenido: la Tabla Periódica en los libros de texto [Different narrative for the same content: Periodic Table in textbooks]. Enseñanza de las Ciencias, Número Extra VIII Congreso Internacional sobre Investigación en Didáctica de las Ciencias, Barcelona, pp. 2892–2895.

  • Ausubel, D., Novak, J. & Hanesfan, H. (1978). Educational psychology. New York, NY: Holt, Rinehart, and Winston.

    Google Scholar 

  • Ben-Zvi, N. & Gemut, S. (1998). Uses and limitations of scientific models: The Periodic Table as an inductive tool. International Journal of Science Education, 20(3), 351–360.

    Article  Google Scholar 

  • Briggs, H. & Holding, B. (1986). Aspects of Secondary students’ understanding of elementary ideas in chemistry: Summary report. Childen’s Learning in Science Project. Centre for Studies in Science and Mathematics Education: University of Leeds.

  • Çalık, M. (2005). A cross-age study of different perspectives in solution chemistry from junior to senior high school. International Journal of Science and Mathematics Education, 3(4), 791–796.

    Google Scholar 

  • Cohen, R. & Swerdlik (2001). Pruebas y Evaluación Psicológicas. Introducción a las Pruebas y a la Medición [Psychological Testing and Evaluation. Introduction to Test and Measurement]. Mexico: McGraw Hill.

  • Demircioğlua, H., Demircioğlua, G. & Çalikb, M. (2009). Investigating the effectiveness of storylines embedded within a context-based approach: The case for the Periodic Table. Chemistry Education Research and Practice, 10, 241–249.

    Article  Google Scholar 

  • DeVellis, R. F. (1991). Scale development theory and applications. Newberry Park, CA: Sage.

    Google Scholar 

  • Esteban, S. (2009). La historia del Sistema Periódico [The history of the Periodic System]. Madrid, Spain: Cuadernos de la UNED.

    Google Scholar 

  • Farrer, N. J., Monk, N., Heron, J., Lough, J. A. & Sadler, P. J. (2010). (RSC)2: Chemistry, performance, and pedagogy—an interactive approach to periodic trends. Chemistry Education Research and Practice, 11, 308–313.

    Article  Google Scholar 

  • Fernández-González, M. (2013). La formulación química en la formación inicial del profesorado: Concepciones y propuestas [The chemical formulation in initial teacher education: Concepts and proposals]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10, 678–693. Retrieved from http://hdl.handle.net/10498/15621

  • Franco-Mariscal, A.J. (2011). El juego educativo como recurso didáctico en la enseñanza de la clasificación periódica de los elementos químicos en Educación Secundaria [The educational game as a didactic resource for teaching the periodic table of the chemical elements in secondary education] (PhD Thesis). University of Cádiz, Cádiz, Spain.

  • Franco-Mariscal, A.J. & Oliva-Martínez, J.M. (2012). Dificultades de comprensión de nociones relativas a la clasificación periódica de los elementos químicos: La opinión de profesores e investigadores en educación química [Difficulties in understanding concepts concerning the Periodic Table of the Elements: The opinion of teachers and researchers in chemistry education]. Revista Científica, 16(2), 53–71.

  • Franco-Mariscal, A.J. & Oliva-Martínez, J.M. (2013). Evolución en el alumnado de la idea de elemento químico a lo largo del bachillerato [Changes in students the idea of chemical element along the baccalaureate] . Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(3), 353–376. Retrieved from http://hdl.handle.net/10498/15443

  • Furió, C. & Domínguez, M.C. (2001). Conocer la historia de la ciencia para comprender las dificultades de los estudiantes sobre el concepto de sustancia química. Enseñanza de las Ciencias, Número Extra VI Congreso Internacional sobre Investigación en la Didáctica de las Ciencias, 55–56.

  • Furió, C. & Domínguez, M. C. (2007). Usual teaching deficiencies when explaining the macroscopic concepts of substance and chemical change. Journal of Science Education, 8(2), 84–92.

    Google Scholar 

  • Hodson, D. (1992). In search of a meaningful relationship: An exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14(5), 541–566.

    Article  Google Scholar 

  • Krathwohl (2002). A revision of Bloom’s taxonomy: An overview. Theory Into Practice, 41(4), 212–218.

    Article  Google Scholar 

  • Lehman, J. R., Koran, J. J. & Koran, M. L. (1984). Interaction of learner characteristics with learning from three models of the Periodic Table. Journal of Research in Science Teaching, 21(9), 885–893.

    Article  Google Scholar 

  • Levine, E. H. (1990). Create your own Periodic Table. Journal of Chemical Education, 67, 1045–1046.

    Article  Google Scholar 

  • Linares, R. (2004). Elemento, átomo y sustancia simple. Una reflexión a partir de la enseñanza de la Tabla Periódica en los cursos generales de Química [Element, atom and simple substance. A reflection from the teaching of the Periodic Table in the general courses Chemistry] (Unpublished Ph.D. Thesis). Universidad Autónoma de, Barcelona, Spain.

  • Linares, R. & Izquierdo, M. (2007). La Tabla Periódica en el [In the Periodic Table]. Journal of Chemical Education a través del siglo XX. Tecné, Episteme y Didaxis, 21, 7–23.

  • McNaught, A. D. & Wilkinson, A. (1997). IUPAC. Compendium of chemical terminology. Oxford: Blackwell Scientific Publications.

    Google Scholar 

  • Millar, R. & Osborne, J. (Eds.). (1998). Beyond 2000: Science education for the future. London, England: King’s College, School of Education.

    Google Scholar 

  • Ministerio de Educación y Ciencia (2007a). Orden ECI/2220/2007, de 12 de julio, por la que se establece el currículo y se regula la ordenación de la Educación Secundaria Obligatoria. (BOE num. 174, 21 de julio de 2007).

  • Ministerio de Educación y Ciencia (2007b). Real Decreto 1467/2007, de 2 de noviembre, por el que se establece la estructura del bachillerato y se fijan sus enseñanzas mínimas. (BOE num. 266, 6 de noviembre de 2007).

  • Niaz, M. (2005). Por que los libros de química general no cambian y siguen una ‘retórica de conclusiones’ [For the general chemistry textbooks do not change and follow a ‘rhetoric of conclusions’]. Educacion Quimica, 16(3), 410–415.

    Google Scholar 

  • Novak, J. D. & Gowin, D. B. (1984). Learning how to learn. New York: Cambridge University Press.

    Book  Google Scholar 

  • Raviolo, A., Garritz, A. & Sosa, P. (2011). Sustancia y reacción química como conceptos centrales en química. Una discusión conceptual, histórica y didáctica [Substance and chemical reaction as central concepts in chemistry. a discussion conceptual, historical and didactic]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 8(3), 240–254. Retrieved from http://hdl.handle.net/10498/14388

    Google Scholar 

  • Scerri, E. R. (2007). The Periodic Table. Its story and its significance. New York, NY: Oxford University Press.

    Google Scholar 

  • Scerri, E. R. (2011). Who is a theorist? Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 8(3), 231–239. Online at: http://hdl.handle.net/10498/14387.

    Google Scholar 

  • Schmidt, H. J. (1998). Does the Periodic Table refer to chemical elements? School Science Review, 80(290), 71–74.

    Google Scholar 

  • Schmidt, H. J. (2000). Should chemistry lessons be more intellectually challenging? Chemistry Education Research and Practice, 1(1), 17–26.

    Article  Google Scholar 

  • Schmidt, H. J., Baumgärtner, T. & Eybe, H. (2003). Changing ideas about the Periodic Table of elements and students’ alternative concepts of isotopes and allotropes. Journal of Research in Science Teaching, 40(3), 257–277.

    Article  Google Scholar 

  • Smith, K. C., Nakhleh, M. B. & Bretz, S. L. (2010). An expanded framework for analyzing general chemistry exams. Chemistry Education Research & Practice, 11, 147–153.

    Article  Google Scholar 

  • Stamovlasis, D., Tsaparlis, G., Kamilatos, C., Papaoikonomou, D. & Zarotiadou, E. (2005). Conceptual understanding versus algorithmic problem solving: Further evidence from national chemistry examination. Chemistry Education Research & Practice, 6, 104–118.

    Article  Google Scholar 

  • Taber, K. S. (1998). The sharing-out of nuclear attraction: Or I can’t think about physics in chemistry. International Journal of Science Education, 20(8), 1001–1014.

    Article  Google Scholar 

  • Taber, K. S. (1999). Ideas about ionisation energy: A diagnostic instrument. School Science Review, 81(295), 97–104.

    Google Scholar 

  • Taber, K. S. (2001). Building the structural concepts of chemistry: Some considerations from educational research. Chemistry Education Research and Practice, 2(2), 123–158.

    Article  Google Scholar 

  • Taber, K. S. (2003). Understanding ionisation energy: Physical, chemical and alternative conceptions. Chemistry Education Research and Practice, 4(2), 149–169.

    Article  Google Scholar 

  • Taber, K. S. & Tan, K. C. D. (2007). Exploring learners’ conceptual resources: Singapore a level students’ explanations in the topic of ionisation energy. International Journal of Science and Mathematics Education, 5(3), 375–392.

    Article  Google Scholar 

  • Talanquer, V. (2006). Commonsense chemistry: A model for understanding student’s alternative conceptions. Journal of Chemical Education, 83, 811–816.

    Article  Google Scholar 

  • Talanquer, V. (2007). Explanations and teleology in chemistry education. International Journal of Science Education, 29, 853–870.

    Article  Google Scholar 

  • Talanquer, V. (2010). Pensamiento Intuitivo en Química: Suposiciones Implícitas y Reglas Heurísticas [Intuitive Thinking in Chemistry: Assumptions Heuristics implicit and Rules]. Enseñanza de las Ciencias, 28(2), 165–174.

    Google Scholar 

  • Wang, C. Y. & Barrow, L. H. (2013). Exploring conceptual frameworks of models of atomic structures and periodic variations, chemical bonding, and molecular shape and polarity: A comparison of undergraduate general chemistry students with high and low levels of content knowledge. Chemistry Education Research and Practice, 14, 130–146.

    Article  Google Scholar 

  • Zoller, U., Lubesky, A., Nakhleh, M. B., Tessier, B. & Dori, J. (1995). Success on algorithmic and LOCS vs. conceptual chemistry exam questions. Journal of Chemical Education, 72, 987–989.

    Article  Google Scholar 

Download references

Acknowledgments

This research was partially supported with funds from the Educational Innovation Team “KIMIKA” (EIEU26), of the University of Cádiz (Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio-Joaquín Franco-Mariscal.

Appendix

Appendix

Table 7 Related to the concept of chemical elements in the Curriculum in the Spanish Educational System (Ministerio de Educación y Ciencia, 2007a, b)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franco-Mariscal, AJ., Oliva-Martínez, J.M. & Almoraima Gil, M.L. Understanding the Idea of Chemical Elements and Their Periodic Classification in Spanish Students Aged 16–18 Years. Int J of Sci and Math Educ 14, 885–906 (2016). https://doi.org/10.1007/s10763-014-9614-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-014-9614-1

Keywords

Navigation