Understanding the Idea of Chemical Elements and Their Periodic Classification in Spanish Students Aged 16–18 Years

  • Antonio-Joaquín Franco-MariscalEmail author
  • José María Oliva-Martínez
  • M. L. Almoraima Gil


The work reported here involved a comparative study regarding the understanding that high school students (16–18 years) have of the concept of chemical elements and their periodic classification. More specifically, the level of knowledge on this topic was compared before and after the completion of baccalaureate studies in a sample of Spanish students. In order to achieve this goal, a questionnaire was developed that included 14 items in an open format, through which various aspects of the students’ understanding of the idea of chemical element and their periodic classification were assessed. In addition, the application of this knowledge to interpret and predict the behaviour and properties of elements and to carry out calculations on the atomic composition of the elements was evaluated. Aspects concerning the acquisition of scientific knowledge, the application of knowledge to different contexts and situations, and the use of scientific evidence to draw conclusions and knowledge about the nature and history of science were evaluated. The questionnaire was previously validated with a large group of students. The results of this study show that improvements occur primarily in addressing higher level cognitive questions (analysis, synthesis and evaluation) in comparison to the lower level tasks (capacity for retention, understanding or direct application of learning). In addition, students who start high school have a very limited understanding of the ideas behind the Periodic Table of the chemical elements and that their lack of understanding, to a large extent, remains upon completion of the baccalaureate. These results suggest that there are real difficulties in understanding this topic and show the limited influence of the studies completed in high school.


High school/baccalaureate Learning problems in chemistry education Periodic Table of the chemical elements Secondary education Student understanding 



This research was partially supported with funds from the Educational Innovation Team “KIMIKA” (EIEU26), of the University of Cádiz (Spain).


  1. Agudelo, C., Marzábal, A. & Izquierdo, M. (2009). Distintas narrativas para un mismo contenido: la Tabla Periódica en los libros de texto [Different narrative for the same content: Periodic Table in textbooks]. Enseñanza de las Ciencias, Número Extra VIII Congreso Internacional sobre Investigación en Didáctica de las Ciencias, Barcelona, pp. 2892–2895.Google Scholar
  2. Ausubel, D., Novak, J. & Hanesfan, H. (1978). Educational psychology. New York, NY: Holt, Rinehart, and Winston.Google Scholar
  3. Ben-Zvi, N. & Gemut, S. (1998). Uses and limitations of scientific models: The Periodic Table as an inductive tool. International Journal of Science Education, 20(3), 351–360.CrossRefGoogle Scholar
  4. Briggs, H. & Holding, B. (1986). Aspects of Secondary students’ understanding of elementary ideas in chemistry: Summary report. Childen’s Learning in Science Project. Centre for Studies in Science and Mathematics Education: University of Leeds.Google Scholar
  5. Çalık, M. (2005). A cross-age study of different perspectives in solution chemistry from junior to senior high school. International Journal of Science and Mathematics Education, 3(4), 791–796.Google Scholar
  6. Cohen, R. & Swerdlik (2001). Pruebas y Evaluación Psicológicas. Introducción a las Pruebas y a la Medición [Psychological Testing and Evaluation. Introduction to Test and Measurement]. Mexico: McGraw Hill.Google Scholar
  7. Demircioğlua, H., Demircioğlua, G. & Çalikb, M. (2009). Investigating the effectiveness of storylines embedded within a context-based approach: The case for the Periodic Table. Chemistry Education Research and Practice, 10, 241–249.CrossRefGoogle Scholar
  8. DeVellis, R. F. (1991). Scale development theory and applications. Newberry Park, CA: Sage.Google Scholar
  9. Esteban, S. (2009). La historia del Sistema Periódico [The history of the Periodic System]. Madrid, Spain: Cuadernos de la UNED.Google Scholar
  10. Farrer, N. J., Monk, N., Heron, J., Lough, J. A. & Sadler, P. J. (2010). (RSC)2: Chemistry, performance, and pedagogy—an interactive approach to periodic trends. Chemistry Education Research and Practice, 11, 308–313.CrossRefGoogle Scholar
  11. Fernández-González, M. (2013). La formulación química en la formación inicial del profesorado: Concepciones y propuestas [The chemical formulation in initial teacher education: Concepts and proposals]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10, 678–693. Retrieved from
  12. Franco-Mariscal, A.J. (2011). El juego educativo como recurso didáctico en la enseñanza de la clasificación periódica de los elementos químicos en Educación Secundaria [The educational game as a didactic resource for teaching the periodic table of the chemical elements in secondary education] (PhD Thesis). University of Cádiz, Cádiz, Spain.Google Scholar
  13. Franco-Mariscal, A.J. & Oliva-Martínez, J.M. (2012). Dificultades de comprensión de nociones relativas a la clasificación periódica de los elementos químicos: La opinión de profesores e investigadores en educación química [Difficulties in understanding concepts concerning the Periodic Table of the Elements: The opinion of teachers and researchers in chemistry education]. Revista Científica, 16(2), 53–71.Google Scholar
  14. Franco-Mariscal, A.J. & Oliva-Martínez, J.M. (2013). Evolución en el alumnado de la idea de elemento químico a lo largo del bachillerato [Changes in students the idea of chemical element along the baccalaureate] . Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 10(3), 353–376. Retrieved from
  15. Furió, C. & Domínguez, M.C. (2001). Conocer la historia de la ciencia para comprender las dificultades de los estudiantes sobre el concepto de sustancia química. Enseñanza de las Ciencias, Número Extra VI Congreso Internacional sobre Investigación en la Didáctica de las Ciencias, 55–56.Google Scholar
  16. Furió, C. & Domínguez, M. C. (2007). Usual teaching deficiencies when explaining the macroscopic concepts of substance and chemical change. Journal of Science Education, 8(2), 84–92.Google Scholar
  17. Hodson, D. (1992). In search of a meaningful relationship: An exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14(5), 541–566.CrossRefGoogle Scholar
  18. Krathwohl (2002). A revision of Bloom’s taxonomy: An overview. Theory Into Practice, 41(4), 212–218.CrossRefGoogle Scholar
  19. Lehman, J. R., Koran, J. J. & Koran, M. L. (1984). Interaction of learner characteristics with learning from three models of the Periodic Table. Journal of Research in Science Teaching, 21(9), 885–893.CrossRefGoogle Scholar
  20. Levine, E. H. (1990). Create your own Periodic Table. Journal of Chemical Education, 67, 1045–1046.CrossRefGoogle Scholar
  21. Linares, R. (2004). Elemento, átomo y sustancia simple. Una reflexión a partir de la enseñanza de la Tabla Periódica en los cursos generales de Química [Element, atom and simple substance. A reflection from the teaching of the Periodic Table in the general courses Chemistry] (Unpublished Ph.D. Thesis). Universidad Autónoma de, Barcelona, Spain.Google Scholar
  22. Linares, R. & Izquierdo, M. (2007). La Tabla Periódica en el [In the Periodic Table]. Journal of Chemical Education a través del siglo XX. Tecné, Episteme y Didaxis, 21, 7–23.Google Scholar
  23. McNaught, A. D. & Wilkinson, A. (1997). IUPAC. Compendium of chemical terminology. Oxford: Blackwell Scientific Publications.Google Scholar
  24. Millar, R. & Osborne, J. (Eds.). (1998). Beyond 2000: Science education for the future. London, England: King’s College, School of Education.Google Scholar
  25. Ministerio de Educación y Ciencia (2007a). Orden ECI/2220/2007, de 12 de julio, por la que se establece el currículo y se regula la ordenación de la Educación Secundaria Obligatoria. (BOE num. 174, 21 de julio de 2007).Google Scholar
  26. Ministerio de Educación y Ciencia (2007b). Real Decreto 1467/2007, de 2 de noviembre, por el que se establece la estructura del bachillerato y se fijan sus enseñanzas mínimas. (BOE num. 266, 6 de noviembre de 2007).Google Scholar
  27. Niaz, M. (2005). Por que los libros de química general no cambian y siguen una ‘retórica de conclusiones’ [For the general chemistry textbooks do not change and follow a ‘rhetoric of conclusions’]. Educacion Quimica, 16(3), 410–415.Google Scholar
  28. Novak, J. D. & Gowin, D. B. (1984). Learning how to learn. New York: Cambridge University Press.CrossRefGoogle Scholar
  29. Raviolo, A., Garritz, A. & Sosa, P. (2011). Sustancia y reacción química como conceptos centrales en química. Una discusión conceptual, histórica y didáctica [Substance and chemical reaction as central concepts in chemistry. a discussion conceptual, historical and didactic]. Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 8(3), 240–254. Retrieved from Google Scholar
  30. Scerri, E. R. (2007). The Periodic Table. Its story and its significance. New York, NY: Oxford University Press.Google Scholar
  31. Scerri, E. R. (2011). Who is a theorist? Revista Eureka sobre Enseñanza y Divulgación de las Ciencias, 8(3), 231–239. Online at: Scholar
  32. Schmidt, H. J. (1998). Does the Periodic Table refer to chemical elements? School Science Review, 80(290), 71–74.Google Scholar
  33. Schmidt, H. J. (2000). Should chemistry lessons be more intellectually challenging? Chemistry Education Research and Practice, 1(1), 17–26.CrossRefGoogle Scholar
  34. Schmidt, H. J., Baumgärtner, T. & Eybe, H. (2003). Changing ideas about the Periodic Table of elements and students’ alternative concepts of isotopes and allotropes. Journal of Research in Science Teaching, 40(3), 257–277.CrossRefGoogle Scholar
  35. Smith, K. C., Nakhleh, M. B. & Bretz, S. L. (2010). An expanded framework for analyzing general chemistry exams. Chemistry Education Research & Practice, 11, 147–153.CrossRefGoogle Scholar
  36. Stamovlasis, D., Tsaparlis, G., Kamilatos, C., Papaoikonomou, D. & Zarotiadou, E. (2005). Conceptual understanding versus algorithmic problem solving: Further evidence from national chemistry examination. Chemistry Education Research & Practice, 6, 104–118.CrossRefGoogle Scholar
  37. Taber, K. S. (1998). The sharing-out of nuclear attraction: Or I can’t think about physics in chemistry. International Journal of Science Education, 20(8), 1001–1014.CrossRefGoogle Scholar
  38. Taber, K. S. (1999). Ideas about ionisation energy: A diagnostic instrument. School Science Review, 81(295), 97–104.Google Scholar
  39. Taber, K. S. (2001). Building the structural concepts of chemistry: Some considerations from educational research. Chemistry Education Research and Practice, 2(2), 123–158.CrossRefGoogle Scholar
  40. Taber, K. S. (2003). Understanding ionisation energy: Physical, chemical and alternative conceptions. Chemistry Education Research and Practice, 4(2), 149–169.CrossRefGoogle Scholar
  41. Taber, K. S. & Tan, K. C. D. (2007). Exploring learners’ conceptual resources: Singapore a level students’ explanations in the topic of ionisation energy. International Journal of Science and Mathematics Education, 5(3), 375–392.CrossRefGoogle Scholar
  42. Talanquer, V. (2006). Commonsense chemistry: A model for understanding student’s alternative conceptions. Journal of Chemical Education, 83, 811–816.CrossRefGoogle Scholar
  43. Talanquer, V. (2007). Explanations and teleology in chemistry education. International Journal of Science Education, 29, 853–870.CrossRefGoogle Scholar
  44. Talanquer, V. (2010). Pensamiento Intuitivo en Química: Suposiciones Implícitas y Reglas Heurísticas [Intuitive Thinking in Chemistry: Assumptions Heuristics implicit and Rules]. Enseñanza de las Ciencias, 28(2), 165–174.Google Scholar
  45. Wang, C. Y. & Barrow, L. H. (2013). Exploring conceptual frameworks of models of atomic structures and periodic variations, chemical bonding, and molecular shape and polarity: A comparison of undergraduate general chemistry students with high and low levels of content knowledge. Chemistry Education Research and Practice, 14, 130–146.CrossRefGoogle Scholar
  46. Zoller, U., Lubesky, A., Nakhleh, M. B., Tessier, B. & Dori, J. (1995). Success on algorithmic and LOCS vs. conceptual chemistry exam questions. Journal of Chemical Education, 72, 987–989.CrossRefGoogle Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2015

Authors and Affiliations

  • Antonio-Joaquín Franco-Mariscal
    • 1
    • 4
    Email author
  • José María Oliva-Martínez
    • 2
  • M. L. Almoraima Gil
    • 3
  1. 1.Instituto de Educación Secundaria Juan Ramón JiménezMálagaSpain
  2. 2.Facultad de Ciencias de la EducaciónUniversidad de CádizCádizSpain
  3. 3.Departamento de Química Física, Facultad de CienciasUniversidad de CádizCádizSpain
  4. 4.Universidad de MálagaMálagaSpain

Personalised recommendations