Skip to main content
Log in

Design and Realization of a W-Band Antenna in Package (AiP) Array Based on Silicon and Quartz

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This paper presents a novel W-band AiP array based on the wafer-level packaging technology with through silicon via (TSV). The proposed antenna array is composed of 2 × 4 radiation elements, a grounded coplanar waveguide (GCPW) to strip line (SL) vertical transition, and a GCPW power divider network. The substrate of the radiation element is quartz, which is welded to the silicon by ball grid array (BGA). The GCPW-to-SL vertical transition based on TSV and ball bumping realizes low-loss interconnection between different silicon layers. The GCPW power divider network feeds the 2 × 4 radiation elements with equal amplitudes and equal phases. The measured results show that the insertion loss of the GCPW-to-SL vertical transition is less than 2 dB in the working frequency range of 90–96 GHz and the gain of the proposed AiP array is about 9.5 dBi at 93 GHz, which verify the feasibility of the AiP solution at W-band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. [1] Ghassemi N and Wu K. Planar dielectric rod antenna for gigabyte chip-to-chip communication. IEEE Transactions on Antennas and Propagation, 60(10):4924–4928, 2012.

    Article  Google Scholar 

  2. [2] Sanming Hu, Yong-Zhong Xiong, Lei Wang, Rui Li, Jinglin Shi, Jinglin Shi and Teck-Guan Lim. Compact High-Gain millimeter wave Antenna for TSV-Based System-in-Package Application. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2(5):841-846, 2012.

    Article  Google Scholar 

  3. [3] H. F. Meng, Y. Chen, and W. B. Dou. Design of dual-polarized monopulse antenna at W-band. Journal of infrared and Millimeter Waves. 38(1):74-78, Feb, 2019.

    Google Scholar 

  4. [4] Y. J. Cheng, W. Hong, and K. Wu. 94GHz Substrate Integrated Monopulse Antenna Array. IEEE Trans. Antennas Propag., 66(1): 121-129, Jan. 2012.

    Article  Google Scholar 

  5. [5] A. K. Singh. A low cost, low side lobe and high efficiency nonorthogonally coupled slotted waveguide array antenna for monopulse radar tracking. Proc. Antennas Propag. Soc. Int. Symp., vol. 3A, pp. 732–735, Jul. 2005.

    Google Scholar 

  6. [6] P. Zheng, B. Hu, S. Xu, and H. sum. A W-band high aperture efficiency multi-polarized monopulse Cassegrain fed by phased microstrip patch quad. IEEE Antennas and Wireless Propagation Letters. vol. 16, pp. 1609-1613, 2017.

    Article  Google Scholar 

  7. [7] J. Lee, Y. Chen, and Y. Huang. A low-power low-cost fully-integrated 60-GHz transceiver system with OOK modulation and on-board antenna assembly. IEEE J. Solid-State Circuits, 45(2):262-275, 2010.

    Article  Google Scholar 

  8. [8] F. Gutierrez, S. Agarwal, K. Parrish, and T. S. Rappaport. On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems. IEEE J. Sel. Area Commun., 27(8):1367–1378, 2009.

    Article  Google Scholar 

  9. [9] Y. P. Zhang and Duixian Liu. Antenna-on-Chip and Antenna-in-Package Solutions to Highly Integrated Millimeter-Wave Devices for Wireless Communications. IEEE Transactions on Antennas and Propagation. 57(10):2830-2841, 2009.

    Article  Google Scholar 

  10. [10] M. Sun, Y. P. Zhang, D. Liu, K. M. Chua, and L. L. Wai. A ball grid array package with a microstrip grid array antenna for a single-chip 60-GHz receiver. IEEE Transactions on Antennas and Propagation. 59(6): 2134–2140, 2011.

    Article  Google Scholar 

  11. [11] U. Pfeiffer, J. Grzyp, D. Liu, B. Gaucher, T. Beukema, B. Floyd, and S. Reynolds. A chip-scale packaging technology for 60-GHz wire-less chipsets. IEEE Trans. Microw. Theory Tech., 54(8): 3387–3397, 2006.

    Article  Google Scholar 

  12. [12] L. Desclos. V-band double slot antenna integration on LTCC substrate using thick film technology. Microw. Opt. Technol. Lett, 28(5): 354–357, 2001.

    Article  Google Scholar 

  13. [13] Kam D G. LTCC packages with embedded phased-array antennas for 60GHz communications. IEEE Microw. Wireless Compon. Lett. 20(3): 142-144, 2011.

    Article  Google Scholar 

  14. Gu X. Enhanced Multilayer organic Packages with Embedded Phased-Array Antennas for 60-GHz Wireless Communications. IEEE ECTC, 1650-1655, 2013.

  15. [15] Atabak R, Saman J, Alexander T, and Kenji H. Compact 60 GHz Phased-Array Antennas With Enhanced Radiation Properties in Flip-Chip BGA Packages. IEEE Transactions on Antennas and Propagation, 67(3):1605–1618, 2019.

    Article  Google Scholar 

  16. Agethen R. 60GHz industrial radar systems in silicon-germanium technology. IEEE MTT-S Symp, 412–416, 2013.

  17. Wojnowski M. A 77-GHz SiGe Single-Chip Four-Channel Transceiver Module with Integrated Antennas in Embedded Wafer-Level BGA Package. IEEE ECTC, 1027–1032,2012.

  18. Valdes-Garcia A. A fully-integrated dual-polarization 16-element W-band phased-array transceiver in SiGe BiCMOS. IEEE RFIC,1–4,2013.

  19. [19] Duixian Liu, Xiaoxiong Gu, Christian W. Bks, and Alberto Valdes-Garcia. Antenna-in-Package Design Considerations for Ka-Band 5G Communication Applications. IEEE Transactions on Antennas and Propagation. 65(12): 6372–6379, 2017.

    Article  Google Scholar 

  20. [20] Lei Wang, Jin Shi, Kai Xu, and Zhi Wei Yin. Compact Dual-Strip Coupled Dual-Patch Antenna for Millimeter-Wave AiP Applications. IEEE Antennas and Wireless Propagation Letters. 20(4): 577-581, 2021

    Article  Google Scholar 

  21. [21] Reyes A C, El-Ghazaly S M, Dorn S, et al. Silicon as a microwave substrate[A]. IEEE MTT-S Symp Dig. Omiya, Japan,1759-1762,1994.

    Google Scholar 

  22. [22] Balanis C A. Antenna Theory Analysis and Design. New York: John Wiley&Sons, 2005.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Major Key Project of PCL under grant PCL2021A01-2 and by the Open Project of the State Key Laboratory of Millimeter Waves under grant K202119.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfu Meng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Yang, J. & Meng, H. Design and Realization of a W-Band Antenna in Package (AiP) Array Based on Silicon and Quartz. J Infrared Milli Terahz Waves 43, 282–293 (2022). https://doi.org/10.1007/s10762-022-00853-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-022-00853-7

Keywords

Navigation