Skip to main content
Log in

Resolution Enhancement in Terahertz Digital In-line Holography by Sparsity-Based Extrapolation

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We introduce a generalized extrapolation framework as a constrained optimization problem to enhance the resolution in terahertz digital in-line holography. The alternating minimization method is employed to iteratively extrapolate the hologram beyond the actually detecting area and to reconstruct the complex amplitude distribution of the object wavefront. Within this framework, we propose a sparsity-based extrapolation model based on L1-norm, where the object mask is not required and the generalized positive absorption constraint can be utilized. This work can achieve super-resolution reconstruction completely by numerical postprocessing without any modification to the imaging system. Both the simulation and experiments on the terahertz band demonstrate the feasibility of the proposed algorithms, and the limit of resolution can be extended by a factor of 1.67.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Gabor, "A new microscopic principle," Nature 161(4098), 777–778 (1948).

    Article  Google Scholar 

  2. L. Valzania, Y. C. Zhao, L. Rong, D. Y. Wang, M. Georges, E. Hack, and P. Zolliker, "THz coherent lensless imaging," Appl. Opt. 58, G256-G275 (2019).

    Article  Google Scholar 

  3. Z. Y. Li, L. Li, Y. Qin, G. B. Li, D. Wang, and X. Zhou, "Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction," Opt. Express 24(18), 21134–21146 (2016).

    Article  Google Scholar 

  4. W. Luo, A. Greenbaum, Y. Zhang, and A. Ozcan, "Synthetic aperture-based on-chip microscopy," Light Sci. Appl. 4(3), e261 (2015).

    Article  Google Scholar 

  5. H. C. Huang, L. Rong, D. Y. Wang, W. H. Li, Q. H. Deng, B. Li, Y. X. Wang, Z. Q. Zhan, X. M. Wang, and W. D. Wu, "Synthetic aperture in terahertz in-line digital holography for resolution enhancement," Appl. Opt. 55(3), A43-A48 (2016).

    Article  Google Scholar 

  6. Z. Y. Li, R. J. Zou, W. P. Kong, X. M. Wang, Q. H. Deng, Q. Yan, Y. Qin, W. D. Wu, and X. Zhou, "Terahertz synthetic aperture in-line holography with intensity correction and sparsity autofocusing reconstruction," Photon. Res. 7, 1391-1399 (2019).

    Article  Google Scholar 

  7. W. Bishara, T. W. Su, A. F. Coskun, and A. Ozcan, "Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution," Opt. Express 18(11), 11181–11191 (2010).

    Article  Google Scholar 

  8. Y. Cotte, M. F. Toy, N. Pavillon, and C. Depeursinge, "Microscopy image resolution improvement by deconvolution of complex fields," Opt. Express 18(19), 19462–19478 (2010).

    Article  Google Scholar 

  9. T. Latychevskaia, F. Gehri, and H. W. Fink, "Depth-resolved holographic reconstructions by three-dimensional deconvolution," Opt. Express 18(21), 22527–22544 (2010).

    Article  Google Scholar 

  10. J. S. Eom and S. J. Moon, "Three-Dimensional High-Resolution Digital Inline Hologram Reconstruction with a Volumetric Deconvolution Method," Sensors 18(9), 2918 (2018).

    Article  Google Scholar 

  11. S. D. Feng and J. G. Wu, "Resolution enhancement method for lensless in-line holographic microscope with spatially-extended light source," Opt. Express 25(20), 24735-24744 (2017).

    Article  Google Scholar 

  12. T. Latychevskaia and H. W. Fink, "Resolution enhancement in digital holography by self-extrapolation of holograms," Opt. Express 21(6), 7726-7733 (2013).

    Article  Google Scholar 

  13. L. Rong, T. Latychevskaia, D. Y. Wang, X. Zhou, H. C. Huang, Z. Y. Li, and Y. X. Wang, "Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation," Opt. Express 22(14), 17236–17245 (2014).

    Article  Google Scholar 

  14. L. Rong, T. Latychevskaia, C. Chen, D. Wang, Z. Yu, X. Zhou, Z. Y. Li, H. Huang, Y. Wang, and Z. Zhou, "Terahertz in-line digital holography of human hepatocellular carcinoma tissue," Sci. Rep. 5, 8445 (2015).

    Article  Google Scholar 

  15. N. S. Balbekin, M. S. Kulya, A. V. Belashov, A. Gorodetsky, and N. V. Petrov, "Increasing the resolution of the reconstructed image in terahertz pulse time-domain holography," Sci. Rep. 9, 180 (2019).

    Article  Google Scholar 

  16. H. Huang, P. Qiu, S. Panezai, S. Hao, D. Zhang, Y. Yang, Y. Ma, H. Gao, L. Gao, Z. Zhang, and Z. Zheng, "Continuous-wave terahertz high-resolution imaging via synthetic hologram extrapolation method using pyroelectric detector," Opt. Laser Technol. 120, 105683 (2019).

    Article  Google Scholar 

  17. T. Latychevskaia and H. W. Fink, "Solution to the twin image problem in holography," Phys. Rev. Lett. 98(23), 233901 (2007).

    Article  Google Scholar 

  18. T. Latychevskaia and H.-W. Fink, "Reconstruction of purely absorbing, absorbing and phase-shifting, and strong phase-shifting objects from their single-shot in-line holograms," Appl. Opt. 54(13), 3925-3932 (2015).

    Article  Google Scholar 

  19. B. D. Haeffele, R. Stahl, G. Vanmeerbeeck and R. Vidal, "Efficient Reconstruction of Holographic Lens-Free Images by Sparse Phase Recovery," Springer, Cham 10434, 109-117 (2017).

    Google Scholar 

  20. W. H Zhang, L. C. Cao, D. J. Brady, H. Zhang, J. Cang, H. Zhang, and G. F. Jin, "Twin-Image-Free Holography: A Compressive Sensing Approach," Phys. Rev. Lett. 121(9), 093902 (2018).

    Article  Google Scholar 

  21. Y. C. Yang, Q. S. Lian, S. Liu, B. S. Shi, and X. Y. Fan, "Resolution enhancement in digital in-line holography with sparsity," Optical Engineering 57(7), 073110 (2018).

    Google Scholar 

  22. Z. Y. Li, Q. Yan, Y. Qin, W. P. Kong, G. B. Li, M. R. Zou, D. Wang, Z. S. You, and X. Zhou, "Sparsity-based continuous wave terahertz lens-free on-chip holography with sub-wavelength resolution," Opt. Express 27(2), 702-713 (2019).

    Article  Google Scholar 

  23. Y. Rivenson, A. Stern, and J. Rosen, "Reconstruction guarantees for compressive tomographic holography," Opt. Lett. 38, 2509-2511 (2013).

    Article  Google Scholar 

  24. S. J. Wright, "Coordinate descent algorithms," Math. Program. 151, 3–34 (2015).

    Article  MathSciNet  Google Scholar 

  25. Netrapalli, Praneeth, P. Jain, and S. Sanghavi, "Phase retrieval using alternating minimization," IEEE Transactions on Signal Processing 63(18), 4814-4826 (2015).

    Article  MathSciNet  Google Scholar 

  26. R. W. Gerchberg and W. O. Saxton, "A practical algorithm for the determination of phase from image and diffraction plane pictures," Optik 35, 237-246 (1972).

    Google Scholar 

  27. J. R. Fienup, "Phase retrieval algorithms: a comparison," Appl. Opt. 21, 2758-2769 (1982)

    Article  Google Scholar 

  28. H. E. Güven, A. Güngör and M. Çetin, "An Augmented Lagrangian Method for Complex-Valued Compressed SAR Imaging," IEEE Trans. Comput. Imag. 2(3), 235-250 (2016).

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by Sichuan Science and Technology Program (2020YJ0205) and National Natural Science Foundation of China (11804320).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zeyu Li or Peng Cheng.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Yan, Q., Qin, Y. et al. Resolution Enhancement in Terahertz Digital In-line Holography by Sparsity-Based Extrapolation. J Infrared Milli Terahz Waves 42, 479–492 (2021). https://doi.org/10.1007/s10762-021-00796-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-021-00796-5

Keywords

Navigation