Skip to main content
Log in

Enhancement of low-quality reconstructed digital hologram images based on frequency extrapolation of large objects under the diffraction limit

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

During the reconstruction of a digital hologram, the reconstructed image is usually degraded by speckle noise, which makes it hard to observe the original object pattern. In this paper, a new reconstructed image enhancement method is proposed, which first reduces the speckle noise using an adaptive Gaussian filter, then calculates the high frequencies that belong to the object pattern based on a frequency extrapolation strategy. The proposed frequency extrapolation first calculates the frequency spectrum of the Fourier-filtered image, which is originally reconstructed from the +1 order of the hologram, and then gives the initial parameters for an iterative solution. The analytic iteration is implemented by continuous gradient threshold convergence to estimate the image level and vertical gradient information. The predicted spectrum is acquired through the analytical iteration of the original spectrum and gradient spectrum analysis. Finally, the reconstructed spectrum of the restoration image is acquired from the synthetic correction of the original spectrum using the predicted gradient spectrum. We conducted our experiment very close to the diffraction limit and used low-quality equipment to prove the feasibility of our method. Detailed analysis and figure demonstrations are presented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kemper, B., Carl, D., Schnekenburger, J., Bredebusch, I., Schäfer, M., Domschke, W., von Bally, G.: Investigation of living pancreas tumor cells by digital holographic microscopy. J. Biomed. Opt. 11, 034005 (2006)

    Article  ADS  Google Scholar 

  2. Popescu, G., Ikeda, T., Dasari, R.R., Feld, M.S.: Diffraction phase microscopy for quantifying cell structure and dynamics. Opt. Lett. 31, 775–778 (2006)

    Article  ADS  Google Scholar 

  3. Debailleul, M., Georges, V., Simon, B., Morin, R., Haeberlé, O.: High resolution three-dimensional tomographic diffractive microscopy of transparent inorganic and biological samples. Opt. Lett. 34, 79–81 (2009)

    Article  ADS  Google Scholar 

  4. Locatelli, M., Pugliese, E., Paturzo, M., Bianco, V., Finizio, A., Pelagotti, A., Poggi, P., Miccio, L., Meucci, R., Ferraro, P.: Imaging live humans through smoke and flames using far-infrared digital holography. Opt. Express 21, 5379–5390 (2013)

    Article  ADS  Google Scholar 

  5. Li, J.C., Tankam, P., Peng, Z.J., Picart, P.: Digital holographic reconstruction of large objects using a convolution approach and adjustable magnification. Opt. Lett. 34, 572–574 (2009)

    Article  ADS  Google Scholar 

  6. Cai, X.O., Wang, H.: The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction. Opt. Comm. 281, 232–237 (2008)

    Article  ADS  Google Scholar 

  7. Kang, X.: An effective method for reducing speckle noise in digital holography. Chin. Opt. Lett. 6, 100–103 (2008)

    Article  ADS  Google Scholar 

  8. Rong, L., Xiao, W., Pan, F., Liu, S., Li, R.: Speckle noise redunction in digital holography by use of multiple polarization holograms. Chin. Opt. Lett. 8, 653–655 (2010)

    Article  Google Scholar 

  9. Xia, P., Shimozato, Y., Ito, Y., Tahara, T., Kakue, T., Awatsuji, Y., Nishio, K., Ura, S., Kubota, T., Matoba, O.: Improvement of color reproduction in color digital holography by using spectral estimation technique. Appl. Opt. 50(34), H177–H182 (2011)

    Article  Google Scholar 

  10. Xia, P., Awatsuji, Y., Ura, S., Tahara, T: Digital holographic spectroscopy using spectral estimation technique. Inf. Opt. IEEE 10.1109/WIO.2013.6601250

  11. Picart, P., Malek, M.: Complex field recovering from in-line digital holography. Opt. Lett. 38(17), 3230–3232 (2013)

    Article  ADS  Google Scholar 

  12. Tahara, T., Awatsuji, Y., Nishio, K., Ura, S., Matoba, O., Kubota, T.: Space-bandwidth capacity-enhanced digital holography. Appl. Phys. Express 6, 022502 (2013)

    Article  ADS  Google Scholar 

  13. Xia, P., Shimozato, Y., Tahara, T., Kakue, T., Awatsuji, Y., Nishio, K., Ura, S., Kubota, T., Matoba, O.: Image reconstruction algorithm for recovering high-frequency information in parallel phase-shifting digital holography. Appl. Opt. 52(1), A210–A215 (2013)

    Article  ADS  Google Scholar 

  14. Mico, V., Zalevsky, Z., García-Martínez, P., García, J.: Synthetic aperture superresolution with multiple off-axis holograms. J. Opt. Soc. Am. A 23, 3162–3170 (2006)

    Article  ADS  Google Scholar 

  15. Seelamantula, C.S., Pavillon, N., Depeursinge, C., Unser, M.: Exact complex-wave reconstruction in digital holography. JOSA A 28(6), 983–992 (2011)

    Article  ADS  Google Scholar 

  16. Koloda, J., Seiler, J., Kaup, A., Sanchez, V.: Frequency selective extrapolation with residual filtering for image error concealment. Speech Signal Process (ICASSP) (2014). doi:10.1109/ICASSP.2014.6853944. (1976–1980)

    Google Scholar 

  17. Nomura, T., Okamura, M., Nitanai, E., Numata, T.: Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths. Appl. Opt. 47, D38–D43 (2008)

    Article  Google Scholar 

  18. McLeod, E., Luo, W., Mudanyali, O., Greenbaum, A., Ozcan, A.: Toward giga-pixel nanoscopy on a chip: a computational wide-field look at the nano-scale without the use of lenses. Lab Chip. doi:10.1039/C3LC50222H:2028-2035 (2013)

  19. Maiseli, B., Wu, C., Mei, J., Liu, Q., Gao, H.: A robust super-resolution method with improved high-frequency components estimation and aliasing correction capabilities. J. Frankl. Inst. 351(1), 513–527 (2014)

    Article  MATH  Google Scholar 

  20. Zuo, C., Chen, Q., Liu, N., Ren, J., Sui, X.: Display and detail enhancement for high-dynamic-range infrared images. Opt. Eng. 50(127401), 1–9 (2011)

    Google Scholar 

  21. Mori, Y., Nomura, T.: Synthesis method from low-coherence digital holograms for improvement of image quality in holographic display. Appl. Opt. 52, 3838–3844 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project is supported by the Chinese National Science Foundation of China (Grant No. 61505083).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Li, W. & Zhao, D. Enhancement of low-quality reconstructed digital hologram images based on frequency extrapolation of large objects under the diffraction limit. Opt Rev 23, 448–459 (2016). https://doi.org/10.1007/s10043-016-0211-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0211-0

Keywords

Navigation