Skip to main content
Log in

Mode Discrimination by Lossy Dielectric Rods in Cavities of Second-Harmonic Gyrotrons

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The influence of a coaxial dielectric rod on eigenvalues, ohmic losses, transverse field structure, and beam-wave coupling coefficients is investigated for TE modes of a gyrotron cavity. It is shown that such dielectric insert, when made from a moderate-loss material, results in strong attenuation of all cavity modes, with the exception of those having caustic radii much larger than the insert radius. It is proposed to employ such dielectric loading for selective suppression of competing modes in cavities of second-harmonic gyrotrons. The high performance and flexibility of the proposed method of mode discrimination are demonstrated for the example of the cavity of the high-power 0.39-GHz second-harmonic gyrotron developed at the University of Fukui. In addition, some fascinating capabilities enabled by coaxial inserts made of ultralow-loss dielectrics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T. Idehara, T. Tatsukawa, I. Ogawa, T. Mori, H. Tanabe, S. Wada, G. F. Brand, M. H. Brennan, Appl. Phys. Lett. (1991) https://doi.org/10.1063/1.105135

  2. V.L. Bratman, A.E. Fedotov, T. Idehara, Int. J. Infrared Millim. Waves (2001) https://doi.org/10.1023/A:1015030405179

  3. S.H. Kao, C.C. Chiu, K.F. Pao, K.R. Chu, Phys. Rev. Lett. (2011) https://doi.org/10.1103/PhysRevLett.107.135101

  4. T. Saito, Y. Tatematsu, Y. Yamaguchi, S. Ikeuchi, S. Ogasawara, N. Yamada, R. Ikeda, I. Ogawa, T. Idehara, Phys. Rev. Lett. (2012) https://doi.org/10.1103/PhysRevLett.109.155001

  5. K. Felch, M. Blank, P. Borchard, S. Cauffman, M. Rosay, L. Tometich, Proc. IEEE Int. Vac. Electron. Conf. (2013) https://doi.org/10.1109/IVEC.2013.6571048

  6. K.D. Hong, G.F. Brand, T. Idehara, J. Appl. Phys. (1993) https://doi.org/10.1063/1.354265

  7. D. Sun, H. Chen, G. Ma, W. Lei, H. Chen, F. Meng, J Infrared Millim. Terahertz Waves (2014) https://doi.org/10.1007/s10762-014-0064-1

  8. G.S. Nusinovich, R. Pu, V. L. Granatstein, Appl. Phys. Lett. (2015) https://doi.org/10.1063/1.4926410

  9. Q. Zhao, S. Yu, T. Zhang, IEEE Trans. Electron Devices ( 2017) https://doi.org/10.1109/TED.2017.2756635

  10. M.M. Melnikova, A.G. Rozhnev, N.M. Ryskin, Y. Tatematsu, M. Fukunari, Y. Yamaguchi, T. Saito, IEEE Trans. Electron Devices (2017) https://doi.org/10.1109/TED.2017.2764874

  11. I.V. Bandurkin, M.Yu. Glyavin, S.V. Kuzikov, P.B. Makhalov, I.V. Osharin, A.V. Savilov, IEEE Trans. Electron Devices (2017) https://doi.org/10.1109/TED.2017.2731982

  12. Yu.S. Oparina, A.V. Savilov, J. Infrared Millim. Terahertz Waves (2018) https://doi.org/10.1007/s10762-018-0499-x

  13. V.I. Shcherbinin, G.I. Zaginaylov, V.I. Tkachenko, Cavity with distributed dielectric coating for subterahertz second-harmonic gyrotron, Problems Atomic Sci. Technol. 6 (106), 255 (2016).

    Google Scholar 

  14. V.I. Shcherbinin, V.I. Tkachenko, J. Infrared Millim. Terahertz Waves, (2017) https://doi.org/10.1007/s10762-017-0386-x

  15. T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, J. Infrared Millim. Terahertz Waves (2019) https://doi.org/10.1007/s10762-019-00623-y

  16. K.A. Avramides, C.T. Iatrou, J.L. Vomvoridis, Design considerations for powerful continuous-wave second-cyclotron-harmonic coaxial-cavity gyrotrons, IEEE Trans. Plasma Sci. (2004) https://doi.org/10.1109/TPS.2004.828781

  17. K.A. Avramides, J.L. Vomvoridis, C.T. Iatrou, AIP Conference Proceedings (2006) https://doi.org/10.1063/1.2158787

  18. V.I. Shcherbinin, V.I. Tkachenko, K.A. Avramidis, J. Jelonnek, IEEE Trans. Electron Devices (2019) https://doi.org/10.1109/TED.2019.2944647

  19. V.I. Shcherbinin, Y.K. Moskvitina, K.A. Avramidis and J. Jelonnek, IEEE Trans. Electron Devices (2020) https://doi.org/10.1109/TED.2020.2996179

  20. S. Ruess, K. A. Avramidis, M. Fuchs, G. Gantenbein, Z. Ioannidis, S. Illy, J. Jin, P.C. Kalaria, T. Kobarg, I.Gr. Pagonakis, T. Ruess, T. Rzesnicki, M. Schmid, M. Thumm, J. Weggen, A. Zeinand, J. Jelonnek, Int. J. Microwave Wireless Technol. (2018) https://doi.org/10.1017/S1759078718000144

  21. S. Illy, K.A. Avramidis, G. Gantenbein, Z. Ioannidis, J. Jin, P. C. Kalaria, I.Gr. Pagonakis, S. Ruess, T. Ruess, T. Rzesnicki, M. Thumm, J. Jelonnek, EPJ Web Conf. (2019) https://doi.org/10.1051/epjconf/201920304005

  22. C.T. Iatrou, S. Kern, A.B. Pavelyev, IEEE Trans. Microw. Theory Techn. (1996) https://doi.org/10.1109/22.481385

  23. C.T. Iatrou, IEEE Trans. Plasma Sci. (1996) https://doi.org/10.1109/27.532942

  24. J.J. Barroso, R.A. Correa, P.J. Castro, IEEE Trans. Microw. Theory Techn (1998) https://doi.org/10.1109/22.709460.

  25. La Agusu, T. Idehara, H. Mori, T. Saito, I. Ogawa, S. Mitsudo, Int. J Infrared Millim. Waves (2007) https://doi.org/10.1007/s10762-007-9215-y.

  26. C. Torrezan, S.T. Han, I. Mastovsky, M. A. Shapiro, J.R. Sirigiri, R.J. Temkin, A.B. Barnes, R.G. Griffin, IEEE Trans. Plasma Sci. (2010) https://doi.org/10.1109/TPS.2010.2046617

  27. S.K. Jawla, R.G. Griffin, I.A. Mastovsky, M.A. Shapiro and R.J. Temkin, IEEE Trans. Electron Devices (2020) https://doi.org/10.1109/TED.2019.2953658

  28. V.I. Shcherbinin, T.I. Tkachova, V.I. Tkachenko, IEEE Trans. Electron Devices (2018) https://doi.org/10.1109/TED.2017.2769219

  29. P.J. Castro, J.J. Barroso, R.A. Correa, Int. J Infrared Millim. Waves (1993) https://doi.org/10.1007/BF02096381

  30. Y.J. Huang, K.R. Chu, M. Thumm, Phys. Plasmas (2015) https://doi.org/10.1063/1.4905627

  31. T. Saito, N. Yamada, S. Ikeuti, S. Ogasawara, Y. Tatematsu, R. Ikeda, I. Ogawa, T. Idehara, V.N. Manuilov, T. Shimozuma, S. Kubo, M. Nishiura, K. Tanaka, K. Kawahata, Phys. Plasmas (2012) https://doi.org/10.1063/1.4729316

  32. V.I. Shcherbinin, G.I. Zaginaylov, V I. Tkachenko, Problems Atomic Sci. Technol. 4 (98), 89 (2015)

    Google Scholar 

  33. V.I. Shcherbinin, B.A. Kochetov, A.V. Hlushchenko, V.I. Tkachenko, IEEE Trans. Microw. Theory Techn. (2019) https://doi.org/10.1109/TMTT.2018.2882493

  34. J. Genoud, S. Alberti, J.-Ph. Hogge, I.G. Tigelis, G.P. Latsas, I.G. Chelis, Phys. Plasmas (2019) https://doi.org/10.1063/1.5130637

  35. V.I. Shcherbinin, A.V. Hlushchenko, A.V. Maksimenko, V.I. Tkachenko, IEEE Trans. Electron Devices, (2017) https://doi.org/10.1109/TED.2017.2730252

  36. D.B. McDermott, D.S. Furuno, N.C. Luhmann, Int. J Infrared Millim. Waves (1983) https://doi.org/10.1007/BF01009701

  37. V.I. Shcherbinin, G.I. Zaginaylov, V.I. Tkachenko, Prog. Electromagn. Res. M, (2017) https://doi.org/10.2528/PIERM16110902

  38. K.A. Avramides, Design and simulation of coaxial gyrotrons (laying emphasis on second-harmonic operation) (Ph. D. Thesis, National Technical University of Athens, Athens, 2006), https://www.didaktorika.gr/eadd/handle/10442/16296?locale=en. Accessed 14 Dec 2020 (in Greek)

  39. E. Savrun, V. Nguyen, D.K. Abe, Proc. IEEE Int. Vac. Electron. Conf. (2002) https://doi.org/10.1109/IVELEC.2002.999246

  40. J.P. Calame, M. Garven, D. Lobas, R.E. Myers, F. Wood, D.K. Abe, Proc. IEEE Int. Vac. Electron. Conf. (2006) https://doi.org/10.1109/IVELEC.2006.1666172

  41. J.P. Calame, M. Garven, B.G. Danly, B. Levush, K.T. Nguyen, IEEE Trans. Electron Devices (2002) https://doi.org/10.1109/TED.2002.801254

  42. Y. Xu, M. Sun, T. Peng, J. Wang, Y. Luo, R. Yan, W. Jiang, G. Liu, H. Li, IEEE Trans. Electron Devices (2019) https://doi.org/10.1109/TED.2019.2894537

  43. E. Borie, O. Dumbrajs, Int. J. Electron. (1986) https://doi.org/10.1080/00207218608920768

  44. D. Wagner, G. Gantenbein, W. Kasparek, M. Thumm, Int. J. Infrared Millim. Waves (1995) https://doi.org/10.1007/BF02274811

  45. G.I. Zaginaylov, V.I. Shcherbinin, K. Schünemann, M. Yu Glyavin, Proc. 8th MSMW (2013) https://doi.org/10.1109/MSMW.2013.6622127

  46. A.V. Maksimenko, G.I. Zaginaylov, V.I. Shcherbinin, Physics of Particles and Nuclei Letters (2015) https://doi.org/10.1134/S1547477115020168

  47. A.V. Maksimenko, V.I. Shcherbinin, V.I. Tkachenko, J. Infrared Millim. Terahertz Waves (2019) https://doi.org/10.1007/s10762-019-00589-x

  48. A.V. Maksimenko, V.I. Shcherbinin, A.V. Hlushchenko, V.I. Tkachenko, K.A. Avramidis and J. Jelonnek, IEEE Trans. Electron Devices (2019) https://doi.org/10.1109/TED.2019.2893888

  49. G.S. Nusinovich, Introduction to the physics of gyrotrons (The Johns Hopkins University Press, Baltimore, 2004), p. 62.

    Google Scholar 

  50. G. Gantenbein, G. Dammertz, J. Flamm, S. Illy, S. Kern, G. Latsas, B. Piosczyk, T. Rzesnicki, A. Samartsev, A. Schlaich, M. Thumm, I. Tigelis, IEEE Trans. Plasma Sci (2010) https://doi.org/10.1109/TPS.2010.2041366

  51. G. Chelis, K.A. Avramidis, Z.C. Ioannidis, I.G. Tigelis, IEEE Trans. Electron Devices, (2018) https://doi.org/10.1109/TED.2017.2784198

  52. M. Thumm, Int. J. Infrared Millim. Waves, (1998) https://doi.org/10.1023/A:1022514528711

  53. V.V. Parshin, V.N. Derkach, B.M. Garin, R. Heidinger, J. Molla, V.G. Ralchenko, S.I. Tarapov, I. Danilov, S.E. Myasnikova, V.I. Polyakov, A.I. Rukovishnikov, Proc. IRMMW-THz (2005) https://doi.org/10.1109/ICIMW.2005.1572387

  54. V.V. Parshin, M.Y. Tretyakov, M.A. Koshelev, E.A. Serov, IEEE Sensors J., (2013) https://doi.org/10.1109/JSEN.2012.2215315

Download references

Acknowledgments

The work of Vitalii I. Shcherbinin was supported by the Georg Forster Research Fellowship for Experienced Researchers from the Alexander von Humboldt Foundation.

Data Availability

Data are available from the authors upon reasonable request.

Funding

Partial financial support was received from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalii I. Shcherbinin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbinin, V.I., Avramidis, K.A., Thumm, M. et al. Mode Discrimination by Lossy Dielectric Rods in Cavities of Second-Harmonic Gyrotrons. J Infrared Milli Terahz Waves 42, 93–105 (2021). https://doi.org/10.1007/s10762-020-00760-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-020-00760-9

Keywords

Navigation