Skip to main content
Log in

Terahertz-Range High-Order Cyclotron Harmonic Planar Gyrotrons with Transverse Energy Extraction

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We develop a multi-mode time-domain model for theoretical description of mode competition in a planar gyrotron with sheet beam of rotating electrons and transverse energy extraction. Within the frame of this model, we demonstrate an improvement of mode selectivity and power increasing in the case of excitation of high-order cyclotron harmonics in terahertz-range planar gyrotrons. The obtained results are confirmed based on direct 3D PIC (particle-in-cell) simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. H. Booske, R. J. Dobbs, C. D. Joye, C. L. Kory, G. R. Neil, G.-S. Park, J. Park, and R. J. Temkin. IEEE Trans. THz Sci. Techn. 1, 1, 54–75 (2011)

    Article  Google Scholar 

  2. M.Yu.Glyavin, T.Idehara, and S.P.Sabchevski. IEEE Trans. THz Sci. Techn, 5, 788 (2015)

    Article  Google Scholar 

  3. M. Yu. Glyavin, A. G. Luchinin, and G. Yu. Golubiatnikov. Phys. Rev. Lett., 100, 015101 (2008).

    Article  Google Scholar 

  4. M.Yu. Glyavin, A. G. Luchinin, G. S. Nusinovich, J. Rodgers, D. G. Kashyn, C. A. Romero-Talamas, R. Pu., Appl. Phys. Lett., 101, 153503, 2012

    Article  Google Scholar 

  5. M. K. Hornstein, V. S. Bajaj, R. G. Griffin, K. E. Kreischer, I. Mastovsky, M. A. Shapiro, J. R. Sirigiri, and R. J. Temkin. IEEE Trans. Electron Devices, 52, 798 (2005).

    Article  Google Scholar 

  6. T. Idehara, I. Ogawa, S. Mitsudo, Y. Iwata, S. Watanabe, Y. Itakura, K. Ohashi, H. Kobayashi, T. Yokoyama, V. E. Zapevalov, M. Yu. Glyavin, A. N. Kuftin, O. V. Malygin, S. P. Sabchevski, IEEE T. Plasma Sci., 32, 3, 903–909 (2004)

    Article  Google Scholar 

  7. V. L. Bratman, Yu. K. Kalynov, and V. N. Manuilov, Phys. Rev. Lett., 102, 245101 (2009).

    Article  Google Scholar 

  8. Yu. K. Kalynov, V. N. Manuilov, A. Sh. Fiks, N. A. Zavolskiy, Appl. Phys. Lett.114, 213502 (2019)

    Article  Google Scholar 

  9. T. Idehara, M. Glyavin, A. Kuleshov, S. Sabchevski, V. Manuilov, V. Zaslavsky, I. Zotova, and A. Sedov, Rev. of Sci. Instr. 88, 094708 (2017).

    Article  Google Scholar 

  10. T. Idehara, K. Kosuga, L. Agusu, I. Ogawa, H. Takahashi, M. E. Smith, R. Dupree, J. Infrared Millim. Terahertz Waves, 31, 763–774 (2010)

    Article  Google Scholar 

  11. M. Thumm, K. A. Avramidis, J. Franck, G. Gantenbein, S. Illy, J. Jin, P. C. Kalaria, I. Gr. Pagonakis, S. Ruess, C. Wu and J. Jelonnek, IEEE Trans. THz Sci. Techn 11, 1, 1–20 (2018)

    Google Scholar 

  12. R. Hirose, S. Hayashi, S. Fukumizu, Y. Muroo, H. Miyata, Y. Okui, A. Itoki, T. Kamikado, O. Ozaki, Y. Nunoya, and K. Okuno, IEEE Trans. Appl. Superconductivity, 16, 953 (2006).

    Article  Google Scholar 

  13. N. S. Ginzburg, I. V. Zotova, A. S. Sergeev, V. Yu. Zaslavsky, and I. V. Zheleznov, Phys. Rev. Lett., 108, 105101 (2012).

    Article  Google Scholar 

  14. A. V. Gaponov, V. A. Flyagin, A. L. Goldenberg, G. S. Nusinovich, S. E. Tsimring, V. G. Usov, S. N. Vlasov, Int. Journal of Electronics, 51, 277, (1981).

    Article  Google Scholar 

  15. N. S. Ginzburg, M. Yu. Glyavin, A. M. Malkin, V. N. Manuilov, R. M. Rozental, A. S. Sedov, A. S. Sergeev, V. Yu. Zaslavsky, I. V. Zotova, and T. Idehara, IEEE Trans. Plasma Sci., 40 (8), 1303 (2016).

    Google Scholar 

  16. V. N. Manuilov, V. Yu. Zaslavsky, N. S. Ginzburg, M. Yu. Glyavin, A. N. Kuftin, and I. V. Zotova, Phys. Plasmas, 21, 023106 (2014).

    Article  Google Scholar 

  17. X. Yuan, Y. Lan, C. Ma, Y. Han, and Y. Yan, Phys. Plasmas, 18, 103115 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu Zaslavsky.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we derive the equations for field evolution taking into account the partial penetration of radiation through the collector narrowing. For simplicity, we will further neglect the Ohmic losses as well as the inhomogeneity of the field along the “open” coordinate X in the equation for TEn mode amplitudes (cf. Eq. 5a):

$$ i\frac{\partial^2{a}_n}{\partial {Z}^2}+{s}_n\frac{\partial {a}_n}{\partial \tau }-i{s}_n{\varDelta}_n-i{\delta}_n(Z){a}_n=0, $$
(A.1)

where the function

$$ {\delta}_n(Z)={\left(\frac{\beta_{\parallel 0}{\lambda}_H}{\pi {V}_{\perp 0}^2}\right)}^2\left({\omega}_n^2(Z)-{\overline{\omega}}_n^2\right)=\left\{\begin{array}{l}0,\kern0.33em Z\in \left(0,{L}_z\right]\\ {}{\overline{\delta}}_n,\kern0.33em Z>{L}_z\end{array}\right., $$
(A.2)

describes the longitudinal profile of the resonator (see Fig. 1b), ωn(Z) is the TEn mode cutoff frequency in cross section Z.

The boundary condition an(Z = 0) = 0 allows us to present the longitudinal structure of the field as:

$$ {a}_n=\left\{\begin{array}{l}{a}_{I,n}{e}^{i\varOmega \tau}\sin \left({\chi}_IZ\right),\kern0.33em Z\in \left(0,L\right]\\ {}{a}_{II,n}{e}^{i\varOmega \tau -i{\chi}_{II}\left(Z-L\right)},\kern0.33em Z>L\end{array}\right., $$
(A.3)

where Ω is the complex frequency, and

$$ {\chi}_I^2={s}_n\left(\varOmega -{\varDelta}_n\right)\kern0.37em \mathrm{and}\;{\chi}_{II}^2={s}_n\left(\varOmega -{\varDelta}_n\right)-{\delta}_n $$

are the longitudinal wavenumbers inside (zone I in Fig. 1b) and outside (zone II) of the interaction space, respectively. If the planar cavity is weakly perturbed,

$$ {\chi}_I=\frac{m\pi}{L_z}+{\tilde{\chi}}_{nm},\kern0.99em \left|{\tilde{\chi}}_{nm}\right|<<\frac{m\pi}{L_z},\kern1.32em m=1,2,\mathrm{3...} $$
(A.4)

Using the continuity of the transverse electric and magnetic fields in the cross section Z = Lz, we obtain the characteristic equation which determines eigenfrequencies Ω

$$ tg\left({\chi}_IL\right)=i\frac{\chi_I}{\chi_{II}}. $$
(A.5)

Thus, as the first approximation of the perturbation theory, we obtain for \( {\tilde{\chi}}_{nm} \):

$$ {\tilde{\chi}}_{nm}=i\frac{m\pi}{L_z^2\sqrt{\chi_I^2-{\overline{\delta}}_n}}\approx i\frac{m\pi}{L_z^2\sqrt{{\left(\frac{m\pi}{L_z}\right)}^2-{\overline{\delta}}_n}}=i\frac{m\pi}{L_z^2\sqrt{D_{nm}}}. $$
(A.6)

When \( {\overline{\delta}}_n>{\left( m\pi /{L}_z\right)}^2,\kern0.66em {D}_{nm}={\left( m\pi /{L}_z\right)}^2-{\overline{\delta}}_n<0 \), the value of \( {\tilde{\chi}}_{nm} \) is real and the corresponding resonator mode with m longitudinal variations is locked by the collector narrowing. In the opposite situation, when Dnm > 0 and the value of \( {\tilde{\chi}}_{nm} \) is imaginary (χI is a complex value), the effective diffractive losses appear for the resonator mode. Thus, varying the size of the cavity narrowing at the collector side allows for discrimination of modes with Dnm > 0, namely those with large \( m>\sqrt{{\overline{\delta}}_n}{L}_z/\pi \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zotova, I.V., Ginzburg, N.S., Malkin, A.M. et al. Terahertz-Range High-Order Cyclotron Harmonic Planar Gyrotrons with Transverse Energy Extraction. J Infrared Milli Terahz Waves 41, 152–163 (2020). https://doi.org/10.1007/s10762-019-00661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00661-6

Keywords

Navigation