Skip to main content
Log in

Atmospheric Effects on Millimeter and Sub-millimeter (THz) Satellite Communication Paths

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Satellite communications require more bandwidth due to the necessity of increasing the capacity of communication channels and bandwidth to end-users. As a result, looking for new bands is required in the electromagnetic spectrum including millimeter and sub-millimeter wavelengths. Recent technological developments made the extremely high frequencies (EHF) above 30 GHz as a candidate for wireless applications such as the fifth generation (5G) of mobile communications, high resolution radars, and remote sensing. The EHF communication systems are becoming more and more commercial, cheap, and compact. However, the fact that the atmospheric medium is not completely transparent to millimeter waves requires considerations of the frequency selective absorption and dispersion effects emerging in this band. These phenomena affect also remote sensing in the millimeter and sub-millimeter waves (the terahertz frequencies). The atmospheric effects on the propagation of millimeter and sub-millimeter wave transmission from land to satellite are discussed. It is shown that not only atmospheric absorption plays a significant role on the received signal strength but also the refraction index of the atmospheric medium. The inhomogeneous refractivity causes the beam to “bend” along the propagation path, and it may even “miss” its destination. This phenomenon should be considered in the design of a link operating in extremely high frequencies involving highly directive antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lutz, E.; Bischl, H.; Ernst, H.; Giggenbach, D.; Holzbock, M.; Jahn, A.; Werner, M., "Development and future applications of satellite communications," Personal, Indoor and Mobile Radio Communications, 2004. PIMRC 2004. 15th IEEE International Symposium on, vol.4, no., pp.2342,2346 Vol.4, 5–8 Sept. 2004.

  2. E. Cianca, Tommaso Rossi, A. Yahalom, Y. Pinhasi, J. Farserotu and C. Sacchi, "EHF for Satellite Communications: The New Broadband Frontier", Proceedings of the IEEE, Vol. 99, No. 11, November 2011.

  3. T. Kleine-Ostmann, and T. Nagatsuma, A Review on Terahertz Communications Research. Journal of Infrared Millimeter and Terahertz Waves, 2011. 32(2): p. 143–171.

    Article  Google Scholar 

  4. Lin, S.-K. Microwave and Millimeter-Wave Remote Sensing for Security Applications. By Jeffrey A. Nanzer, Artech House, 2012. Remote Sens. 2013, 5, 367–373.

    Article  Google Scholar 

  5. S.K. Sarkar, Rajesh Kumar, Cloud characteristics and cloud attenuation in millimeter wave and microwave frequency bands for satellite and remote sensing applications over a northern Indian tropical station, International J of Infrared and millimeter waves, 23, 937–943, 2002.

    Article  Google Scholar 

  6. Peng, S.S., Wu, L., Ying, X.H., A Receiver in a Millimeter Wave Radiometer for Atmosphere Remote Sensing. International J of Infrared and millimeter waves, (2009) 30: 259.

    Article  Google Scholar 

  7. X. Yang, J. Yang, "A research on millimeter wave LFMCW radar for airfield object imaging". Int. J. Infrared Millimeter Waves, vol. 22, pp. 247–253, Feb. 2001.

    Article  Google Scholar 

  8. D. C. Kim, S. Sayama, M. Sekine, "Detection of target embedded in sea clutter by means of millimeter wave radar". Int. J. Infrared Millimeter Waves, vol. 24, pp. 1499–1508, 2003.

    Article  Google Scholar 

  9. R. K. Crane, “Propagation phenomena affecting satellite communication systems operating in the centimeter and millimeter wavelength bands”. Proc. of the IEEE, vol. 59, no. 2, pp. 173–188, 1971

    Article  Google Scholar 

  10. R. K. Crane, “Fundamental limitations caused by RF propagation”. Proc. IEEE, vol. 69, no. 2, pp. 196–209, 1981.

    Article  Google Scholar 

  11. L. J. Ippolito, “Radio propagation for space communication systems”. Proc. IEEE, vol. 69, no. 6, pp. 697–727, 1981.

    Article  Google Scholar 

  12. H. J. Liebe, “Atmospheric EHF window transparencies near 35, 90, 140 and 220 GHz”, IEEE Trans. On Antennas and Propagation, vol. 31, no. 1, pp. 127–135, 1983.

  13. R. A. Bohlander, R. W. McMillan, “Atmospheric effects on near millimeter wave propagation”. Proc. of the IEEE, vol. 73, no. 1, pp. 49–60, 1985.

    Article  Google Scholar 

  14. N. C. Currie, and C. E. Brown, Principles and applications of millimeter-wave radar. Artech House, 1987.

  15. Attenuation by atmospheric gases ITU-R P.676–11, 09/2016.

  16. N. Balal, G. A. Pinhasi and Y. Pinhasi, "Atmospheric and Fog Effects on Ultra-Wide Band Radar Operating at Extremely High Frequencies", Sensors 2016, 16, 751.

    Article  Google Scholar 

  17. H. J. Liebe, “An updated model for millimeter wave propagation in moist air”. Radio Sci., vol. 20, pp. 1069–1089, 1985.

    Article  Google Scholar 

  18. H. J. Liebe, “MPM – An atmospheric millimeter-wave propagation model”. Int. J. of Infrared and Millimeter waves, vol. 10, no. 6, pp. 631–650, 1989.

    Article  Google Scholar 

  19. H. J. Liebe, T. Manabe and G. A. Hufford, “Millimeter-wave attenuation and delay rates due to fog / cloud conditions”, IEEE Trans. On Antennas and Propagation, vol. 37, no. 12, pp. 1617–1623, 1989.

    Article  Google Scholar 

  20. H. J. Liebe, G. A. Hufford and T. Manabe, “A model for the complex permittivity of water at frequencies below 1THz”. Int. J. of Infrared and Millimeter waves, vol. 12, no. 7, pp. 659–675, 1991.

    Article  Google Scholar 

  21. Recommendation ITU-R P.676–11, Attenuation by atmospheric gases, 09/2016; Recommendation ITU-R P.840–6, Attenuation due to clouds and fog, 09/2013.

  22. Y. Pinhasi, A. Yahalom and G. A. Pinhasi, “Propagation Analysis of Ultra-Short Pulses in Resonant Dielectric Media”. J. Opt. Soc. Am. B, vol. 26, No. 12, December 2009

  23. J. H. van Vleck, “The absorption of microwaves by oxygen”. Phys. Rev., vol. 71, pp. 413–424, 1947.

    Article  Google Scholar 

  24. P. W. Rosenkranz, “Shape of the 5 mm oxygen band in the atmosphere”, IEEE Trans. On Antennas and Propagation, vol. 23, pp. 498–506, 1975.

    Article  Google Scholar 

  25. H. J. Liebe, P. W. Rosenkranz and G. A. Hufford, “Atmospheric 60GHz oxygen spectrum: new laboratory measurements and line parameters”. J. of Quantitative Spectroscopy and Radiative Transfer, vol. 48, pp. 629–643, 1992.

    Article  Google Scholar 

  26. Meschede, Dieter. 2007. Optics, light and lasers: the practical approach to modern aspects of photonics and laser physics.

    Google Scholar 

  27. Straw, R. Dean, Ed. (2000). The ARRL Antenna Book, 19th Ed. USA: American Radio Relay League. p. 18.14.

  28. Minoli, Daniel (2009). Satellite Systems Engineering in an IPv6 Environment. USA: CRC Press. p. 78.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yosef Pinhasi.

Appendix. Derivation of the ray path (Eq. (10)) in spherical coordinates

Appendix. Derivation of the ray path (Eq. (10)) in spherical coordinates

Looking at Fig. 14, an expression for the angle θ(r) can be written in terms of the angle of incidence γ:

$$ \frac{d\theta}{d r}=\frac{d\theta}{d s}/\frac{d r}{d s}=\frac{\sin \gamma /r}{\cos \gamma }=\frac{\sin \gamma }{r\sqrt{1-{\sin}^2\gamma }} $$
(13)
Fig. 14
figure 14

Illustration of the ray path

Here, ds is an infinitesimal element at a position r along the path of the ray. Noting that γ0 = γ(r = R) = 90 − ψ0 (see Fig. 5), the Snell’s law (Eq. (9)) in spherical coordinates can be rewritten:

$$ \sin \gamma =\frac{R\cdot {n}_0\cdot \cos \left({\psi}_0\right)}{r\cdot {n}_r(r)} $$
(14)

Substitution of Eq. (14) in Eq. (13), we get:

$$ \frac{d\theta}{d r}=\frac{\frac{R\cdot {n}_0\cdot \cos \left({\psi}_0\right)}{r\cdot {n}_r(r)}}{r\sqrt{1-{\left[\frac{R\cdot {n}_0\cdot \cos \left({\psi}_0\right)}{r\cdot {n}_r(r)}\right]}^2}}=\frac{R\cdot {n}_0\cdot \cos \left({\psi}_0\right)}{r\sqrt{{\left[r\cdot {n}_r(r)\right]}^2-{\left[R\cdot {n}_0\cdot \cos \left({\psi}_0\right)\right]}^2}} $$
(15)

Integrating the last expression results in:

$$ \theta (r)=\underset{R}{\overset{r}{\int }}\frac{R\cdot {n}_0\cdot \cos \left({\psi}_0\right)}{r^{,}\sqrt{{\left[{r}^{,}\cdot {n}_r\left({r}^{,}\right)\right]}^2-{\left[R\cdot {n}_0\cdot \cos \left({\psi}_0\right)\right]}^2}}d{r}^{,} $$
(16)

Which is Eq. (10) for θ(r).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balal, Y., Pinhasi, Y. Atmospheric Effects on Millimeter and Sub-millimeter (THz) Satellite Communication Paths. J Infrared Milli Terahz Waves 40, 219–230 (2019). https://doi.org/10.1007/s10762-018-0554-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0554-7

Keywords

Navigation