Skip to main content
Log in

Ultrafast Relaxation of Charge Carriers Induced Switching in Terahertz Metamaterials

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

We demonstrate ultrafast switching of resonant mode in terahertz metamaterials through optical excitation of radiation-damaged silicon placed in the gap of a split-ring resonator. Upon optical excitation, we observe the dynamic transition of the fundamental resonance from ON-to-OFF state on a timescale of 4 picoseconds (ps) and then fast recovery of the resonance to the ON-state within the next 20 ps. Electric field distributions in the metamaterial unit cell derived through numerical simulations clearly support our experimental observations, showing that the high electric field at the resonator gaps, responsible for inductive-capacitive (LC) resonance, completely disappears and switches OFF the resonance after being optically excited. The ultrafast switching of the metamaterial resonance is attributed to the relaxation of the photo-carriers through the defect states of radiation-damaged silicon layer. Such ultrafast material–based active control of metamaterials can lead to the ultrafast terahertz metaphotonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.G. Veselago, Soviet physics uspekhi 10(4), 509 (1968).

  2. J.B. Pendry, A.J. Holden, D.J. Robbins, W. Stewart, IEEE transactions on microwave theory and techniques 47(11), 2075 (1999).

  3. R.A. Shelby, D.R. Smith, S. Schultz, science 292(5514), 77 (2001).

  4. T.J. Yen, W. Padilla, N. Fang, D. Vier, D. Smith, J. Pendry, D. Basov, X. Zhang, Science 303(5663), 1494 (2004).

  5. C.M. Soukoulis, S. Linden, M. Wegener, Science 315(5808), 47 (2007).

  6. I.A.I. Al-Naib, C. Jansen, M. Koch, Applied Physics Letters 93(8), 083507 (2008).

  7. H. Tao, A. Strikwerda, K. Fan, W. Padilla, X. Zhang, R. Averitt, Physical review letters 103(14), 147401 (2009).

  8. S.J.M. Rao, D. Kumar, G. Kumar, D.R. Chowdhury, Journal of Infrared, Millimeter, and Terahertz Waves 38(1), 124 (2017).

  9. M. Islam, S.J.M. Rao, G. Kumar, B.P. Pal, D.R. Chowdhury, Scientific reports 7(1), 7355 (2017).

  10. F. Miyamaru, H. Morita, Y. Nishiyama, T. Nishida, T. Nakanishi, M. Kitano, M.W. Takeda, Scientific reports 4, 4346 (2014).

  11. D.R. Chowdhury, J.F. O’Hara, A.J. Taylor, A.K. Azad, Applied Physics Letters 104(10), 101105 (2014).

  12. A. Christofi, Y. Kawaguchi, A. Alù, A.B. Khanikaev, Optics letters 43(8), 1838 (2018).

  13. S.J.M. Rao, D. Kumar, G. Kumar, D.R. Chowdhury, IEEE Journal of Selected Topics in Quantum Electronics 23(4), 1 (2017).

  14. L. Cong, W. Cao, Z. Tian, J. Gu, J. Han, W. Zhang, New Journal of physics 14(11), 115013 (2012).

  15. R. Singh, X. Lu, J. Gu, Z. Tian, W. Zhang, Journal of Optics 12(1), 015101 (2009).

  16. M.R. Hashemi, S. Cakmakyapan, M. Jarrahi, Reports on Progress in Physics 80(9), 094501 (2017).

  17. Y. Yu, Z. Yang, M. Zhao, P. Lu, Journal of Optics 13(5), 055104 (2011).

  18. S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, B. Wang, C. Xu, Journal of Physics D: Applied Physics 50(19), 195101 (2017).

  19. I. Al-Naib, Journal of Infrared, Millimeter, and Terahertz Waves 39(1), 1 (2018).

  20. D.R. Smith, W.J. Padilla, D. Vier, S.C. Nemat-Nasser, S. Schultz, Physical review letters 84(18), 4184 (2000).

  21. P. Gay-Balmaz, O.J. Martin, Journal of applied physics 92(5), 2929 (2002).

  22. O. Sydoruk, E. Tatartschuk, E. Shamonina, L. Solymar, Journal of applied physics 105(1), 014903 (2009).

  23. W.J. Padilla, A.J. Taylor, C. Highstrete, M. Lee, R.D. Averitt, Physical review letters 96(10), 107401 (2006).

  24. R. Singh, C. Rockstuhl, F. Lederer, W. Zhang, Physical Review B 79(8), 085111 (2009).

  25. L. Cong, Y.K. Srivastava, H. Zhang, X. Zhang, J. Han, R. Singh, Light: Science & Applications 7(1), 28 (2018).

  26. A. Kumar, Y.K. Srivastava, M. Manjappa, R. Singh, Advanced Optical Materials p 1800030 (2018).

  27. D. Roy Chowdhury, R. Singh, J.F. O’Hara, H.T. Chen, A.J. Taylor, A.K. Azad, Applied Physics Letters 99(23), 231101 (2011).

  28. D. Roy Chowdhury, R. Singh, A.J. Taylor, H.T. Chen, A.K. Azad, Applied Physics Letters 102(1), 011122 (2013).

  29. N. Liu, S. Kaiser, H. Giessen, Advanced Materials 20(23), 4521 (2008).

  30. Q. Zhou, Y. Shi, A. Wang, L. Li, D. Zhao, J. Liu, H. Sun, C. Zhang, Journal of Optics 13(12), 125102 (2011).

  31. H. Tao, A. Strikwerda, K. Fan, C. Bingham, W. Padilla, X. Zhang, R. Averitt, Journal of Physics D: Applied Physics 41(23), 232004 (2008).

  32. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, H. Giessen, Nano letters 10(4), 1103 (2009).

  33. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, H. Giessen, Optics express 14(19), 8827 (2006).

  34. M. Tonouchi, Nature photonics 1(2), 97 (2007).

  35. H.T. Chen, W.J. Padilla, J.M. Zide, S.R. Bank, A.C. Gossard, A.J. Taylor, R.D. Averitt, Optics letters 32(12), 1620 (2007).

  36. M. Ketchen, D. Grischkowsky, T. Chen, C.C. Chi, I. Duling Iii, N. Halas, J.M. Halbout, J. Kash, G. Li, Applied Physics Letters 48(12), 751 (1986).

  37. D. Grischkowsky, S. Keiding, M. Van Exter, C. Fattinger, JOSA B 7(10), 2006 (1990).

  38. R. Averitt, A. Taylor, Journal of Physics: Condensed Matter 14(50), R1357 (2002).

  39. F. Doany, D. Grischkowsky, C.C. Chi, Applied Physics Letters 50(8), 460 (1987).

  40. N. Katsarakis, T. Koschny, M. Kafesaki, E. Economou, C. Soukoulis, Applied Physics Letters 84(15), 2943 (2004).

  41. L.R. Vanderhoef, A.K. Azad, C.C. Bomberger, D.R. Chowdhury, D.B. Chase, A.J. Taylor, J.M. Zide, M.F. Doty, Physical Review B 89(4), 045418 (2014).

  42. P. Smith, D. Auston, A. Johnson, W. Augustyniak, Applied Physics Letters 38(1), 47 (1981).

  43. S.D. Brorson, J. Zhang, S.R. Keiding, Applied physics letters 64(18), 2385 (1994).

  44. J. Bokor, N. Halas, IEEE Journal of Quantum Electronics 25(12), 2550 (1989).

  45. A.E. Khorasani, D.K. Schroder, T. Alford, IEEE Transactions on Electron Devices 62(5), 1553 (2015).

Download references

Acknowledgements

Authors A. K. A. and D. R. C. acknowledge support from the Los Alamos National Laboratory LDRD Program. This work was performed, in part, at the Center for Integrated Nanotechnologies, a US Department of Energy, Office of Basic Energy Sciences Nanoscale Science Research Centre operated jointly by Los Alamos and Sandia National Laboratories. Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the US Department of Energy under contract DE-AC52-06NA25396. Author D. R. C. acknowledge partial support from the SERB, Department of Science and Technology, India (EMR/2015/001339). Author, GK gratefully acknowledge the financial support from the Board of Research in Nuclear Sciences (BRNS), India (34/20/17/2015/BRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibakar Roy Chowdhury.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, S.J.M., Kumar, G., Azad, A.K. et al. Ultrafast Relaxation of Charge Carriers Induced Switching in Terahertz Metamaterials. J Infrared Milli Terahz Waves 39, 1211–1220 (2018). https://doi.org/10.1007/s10762-018-0547-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0547-6

Keywords

Navigation